
6.006- Introduction to Algorithms

Lecture 19
Prof. Patrick Jaillet

Lecture overview
Dynamic Programming II

– review
• key aspects of Dynamic Programming (DP)
• all-pairs shortest paths as a DP

– another DP for all-pairs shortest paths
– longest common subsequence

CLRS 15.3, 15.4, 25.1, 25.2

Dynamic Programming
•  DP ≈ recursion + memoization
•  Typically (not always) applied to optimization

problems – ex Fibonaci, Crazy eight, SPPs

Optimal substructure
optimal solution to a problem can be obtained

from optimal solutions to subproblems.

Overlapping subproblems
A recursive solution contains a “small” number of

distinct subproblems (repeated many times)

Dynamic Programming

•  DP ≈ recursion + memoization
•  DP works when:

– the solution can be produced by combining
solutions of subproblems;

– the solution of each subproblem can be produced
by combining solutions of sub-subproblems, etc;

moreover …. is efficient if
– the total number of subproblems arising

recursively is polynomial.

All-pairs shortest paths

•  Input: Directed graph G = (V, E), where |V | = n,
with edge-weight function w : E → R

•  Output: n × n matrix of shortest-path lengths δ(i, j)
for all i, j ∈ V.

Dynamic Programming Approach

•  Consider the n × n matrix A = (aij)
 where aij=w(i,j) if (i,j) ∈ E.

•  Define dij
(m) = weight of a shortest path from i to j

that uses at most m edges
•  We have

– dij
(0) = 0, if i = j,

– and dij
(0) = ∞ otherwise;

CLAIM:
for m = 1, 2, …, n–1, dij

(m) = mink{dik
(m–1) + akj}

Proof of Claim

…

≤ m-1 edges

≤ m-1 edges i j

k’s
dij

(m) = mink{dik
(m–1) + akj }

for k ← 1 to n
if dij > dik + akj

dij ← dik + akj

Relaxation

DP Approach, running time

•  Consider the n × n matrix A = (aij), where aij=w(i,j)
if (i,j) ∈ E.

•  Define dij
(m) = weight of a shortest path from i to j

that uses at most m edges
We have

– dij
(0) = 0, if i = j,

– and dij
(0) = ∞ otherwise;

CLAIM:
for m = 1, 2, …, n–1, dij

(m) = mink{dik
(m–1) + akj}

O(n4) - similar to n runs of Bellman-Ford

Dynamic Programming
•  DP ≈ recursion + memoization
•  Typically (not always) applied to optimization

problems

Optimal substructure ?
optimal solution to a problem can be obtained

from optimal solutions to subproblems.

Overlapping subproblems ?
A recursive solution contains a “small” number of

distinct subproblems (repeated many times)

Another DP Approach

•  Consider again the n × n matrix A = (aij)
 where aij=w(i,j) if (i,j) ∈ E.

•  Define dij
(k) = weight of a shortest path from i to j for

which all intermediate vertices are chosen among
{1,2, ..., k}

•  CLAIM:
– dij

(k) = aij if k=0,
– dij

(k) = min{dij
(k-1),dik

(k–1) +dkj
(k–1)} if k≥1;

O(n3) running time (Floyd-Warshall)

Dynamic Programming
•  DP ≈ recursion + memoization
•  Typically (not always) applied to optimization

problems

Optimal substructure ?
optimal solution to a problem can be obtained

from optimal solutions to subproblems.

Overlapping subproblems ?
A recursive solution contains a “small” number of

distinct subproblems (repeated many times)

Longest Common Subsequence

•  given two sequences x[1..m] and y[1..n], find a
longest subsequence LCS(x,y) common to both:

 x: A B C B D A B

 y: B D C A B A

•  denote the length of a sequence s by |s|
•  let us first try to get |LCS(x,y)|

Brute force solution

•  For every subsequence of x[1..m] , check if
it is a subsequence of y[1..n]

•  Analysis
– 2m subsequences of x
– each check takes Ο(n) time ...
– worst case running time is Ο(n2m)

•  Pretty bad (brute!)

Using prefixes
•  consider prefixes of x and y

– x[1..i] ith prefix of x[1..m]
– y[1..j] jth prefix of y[1..n]

•  define c[i,j] = |LCS(x[1..i],y[1..j])|

•  so c[m,n] = |LCS(x,y)|

•  recurrence?

1) x[1..i] and y[1..j] end with xi=yj

x1 x2 … xi-1 xi

y1 y2 … yj-1 yj=xi

z1 z2…zk-1 zk =yj=xi

Zk is Zk -1 followed by zk = yj = xi where
Zk-1 is an LCS of x[1..i-1] and y[1..j-1]

 c(i, j) = c(i-1, j-1)+1

Example - use of property 1

x: B A N A N A

y: A T A N A

by inspection LCS of B A N and A T is A
so LCS(x,y) is A A N A

2) x[1..i] and y[1..j] end with xi ≠ yj

x1 x2 … xi-1 xi

y1 y2 … yj-1 yj

Zk z1 z2…zk-1 zk ≠yj

LCS of x[1..i] and y[1..j-1]

x1 x2 … xi-1 x i

yj y1 y2 …yj-1 yj

Zk z1 z2…zk-1 zk ≠ xi

c(i, j)=max{c(i, j-1), c(i-1, j)}

LCS of x[1..i-1] and y[1..j]

Example: use of property 2

 The last character of the LCS(x,y) either:
– ends with a G => can’t end with a K

• => can remove K from y
– doesn’t end with a G

• => can remove G from x

x: A B C D E F G

y: B C D G K

A recurrence, summary
•  consider prefixes of x and y

– x[1..i] ith prefix of x[1..m]
– y[1..j] jth prefix of y[1..n]

•  define c[i,j] = |LCS(x[1..i],y[1..j])|
– so c[m,n] = |LCS(x,y)|

•  recurrence:

€

c[i, j] =
c[i −1, j −1] +1 if xi = y j

max{c[i −1, j],c[i, j −1]} otherwise

⎧
⎨
⎩

Solving LCS with DP

•  running time is
– O(n×m) €

c[i, j] =
c[i −1, j −1] +1 if xi = y j

max{c[i −1, j],c[i, j −1]} otherwise

⎧
⎨
⎩

Dynamic Programming
•  DP ≈ recursion + memoization
•  Typically (not always) applied to optimization

problems

Optimal substructure ?
optimal solution to a problem can be obtained

from optimal solutions to subproblems.

Overlapping subproblems ?
A recursive solution contains a “small” number of

distinct subproblems (repeated many times)

