6.006- Introduction to Algorithms

Lecture 19
Prof. Patrick Jaillet

Lecture overview

Dynamic Programming II

— review
* key aspects of Dynamic Programming (DP)
e all-pairs shortest paths as a DP

— another DP for all-pairs shortest paths

— longest common subsequence

CLRS 15.3, 15.4, 25.1, 25.2

Dynamic Programming

e DP = recursion + memoization

* Typically (not always) applied to optimization
problems — ex Fibonaci, Crazy eight, SPPs s

(D
Optimal substructure
optimal solution to a problem can be obtained
from optimal solutions to subproblems.
L G
D

Overlapping subproblems
A recursive solution contains a “small” number of
distinct subproblems (repeated many times)

Dynamic Programming

e DP = recursion + memoization
e DP works when:

— the solution can be produced by combining
solutions of subproblems;

— the solution of each subproblem can be produced
by combining solutions of sub-subproblems, etc;

moreover 1s efficient if

— the total number of subproblems arising
recursively 1s polynomial.

All-pairs shortest paths

* Input: Directed graph G = (V, E), where |V | = n,
with edge-weight function w : £ — R

* Output: n < n matrix of shortest-path lengths o(:, /)
foralli,; € V.

Dynamic Programming Approach

 Consider the n x n matrix 4 = (aij)
where a,=w(i,j) if (i,j) € E.

* Define d," = Welght of a shortest path from 7 to ;
that uses at most 72 edges

« We have
-d, 0 =0,ifi =},
—and dl.j(o) = oo otherwise;
CLAIM:
form=1,2,...,n-1, d,; = min {d, " +a,}

Proof of Claim

ks
dl.j(”” = min, {d, "D + a; |
| edged
< m-
< m-1 edges
N) ey
8 Cs
fork<— 1ton
if dl-j >d, + a;
dz‘j‘_dz‘k+akj 5_/77\1
: edé’e
Relaxation N

DP Approach, running time

* Consider the 7 x n matrix 4 = (a,,), where a,;=w(i,j)
if (ij) € E.

» Define d, " = weight of a shortest path from i to ;
that uses at most 72 edges

We have
-d,0=0,ifi=},
—and dl.j(o) = oo otherwise;
CLAIM:
form=1,2,..., n-1, dij(m) = min,{d "D + a,}

O(n*) - similar to n runs of Bellman-Ford

Dynamic Programming

e DP = recursion + memoization

* Typically (not always) applied to optimization
problems o

C

Optimal substructure ?
optimal solution to a problem can be obtained
from optimal solutions to subproblems.

®

o|C

Overlapping subproblems ?
A recursive solution contains a “small” number of
distinct subproblems (repeated many times)

Another DP Approach

* Consider again the » < n matrix 4 = (a,)
where a,=w(i,j) if (i,j) € E.

 Define d, ¥ = weight of a shortest path from i to ; for
which all intermediate vertices are chosen among

712 ..k

« CLAIM:
— 4,0 = a; if k=0,
—d;®=min{d,*D,d; *D +d, <D} if k>1;

O(»?) running time (Floyd-Warshall)

Dynamic Programming

e DP = recursion + memoization

* Typically (not always) applied to optimization
problems o

C

Optimal substructure ?
optimal solution to a problem can be obtained
from optimal solutions to subproblems.

®

o|C

Overlapping subproblems ?
A recursive solution contains a “small” number of
distinct subproblems (repeated many times)

Longest Common Subsequence

* given two sequences x[1..m] and y[1..n], find a
longest subsequence LCS(x,y) common to both:

) A/BC/'yy
y B D C A B A

 denote the length of a sequence s by |s]
* let us first try to get |[LCS(x,y)|

Brute force solution

* For every subsequence of x[1..m] , check 1f
it 1s a subsequence of y[1..n]

* Analysis

— 2™ subsequences of x

— each check takes O(n) time ...

— worst case running time 1s O(n2™)
* Pretty bad (brute!)

Using prefixes

* consider prefixes of x and y

Cx[1.0

—y[1.]]

ith prefix of x
jth prefix of y

'1..m]

1.n]

 define c[i,j] = |[LCS(X[1..i],y[1../])]

* so c¢[m,n] = [LCS(x,y)|

e recurrence?

1) x[1..1] and y[1..j] end with x;=y;

‘Xl Xy ... Xi-l‘ X ‘

‘Y1 Y2 .- yi-l‘Yi=Xi

Zi 18 Z, , followed by 7z, = y; = x; where
Z.11san LCS of x[1..i-1] and y[1..j-1]

c(, j) = e(i-1, j-1)+1

Example - use of property 1

by inspection LCSof BANand AT is A
so LCS(x,y)iIsAAN A

2) x|1..i] and y[1..j] end with x; =y

I, X, eoxiy X | 1%, %, oo xpy | X |

vi¥s - ¥uly, YY1 ¥ ¥]
Z |z zz...zk_1!Zk¢yj | Z |z Zz...zk_I!Zkaﬁxi‘
LCS of x[1..i] and y[1..j-1] LCS of x[1..i-1] and y[1..j]

C(i, j)=max{c(i, j'l)a C(l-l,])}

Example: use of property 2

A B C D E F G

B C D G K

The last character of the LCS(X,y) either:
—ends with a G => can’t end with a K

e => can remove K from y
—doesn’t end with a G

e => can remove G from x

A recurrence, summary

 consider prefixes of x and y
—x][1..1] 1th prefix of x[1..m]
—vy[1..7] jth prefix of y[1..n]

 define c[i,j] = |LCS(x[1..i],y[1l../])|
—so ¢[m,n] = |LCS(x,y)|

* recurrence:

cli-1,j-1]+1 ifx, =y,
max{cli-1,jl,cli,j 1]} otherwise

cli,jl=+

Solving LCS with DP

o feli-1j-1]+1 ifx, =y,
cli,j] =1

max{cli-1,j],cli,j-1]} otherwise

* running time i1s
— O(m*xm)

Dynamic Programming

e DP = recursion + memoization

* Typically (not always) applied to optimization
problems o

C

Optimal substructure ?
optimal solution to a problem can be obtained
from optimal solutions to subproblems.

®

o|C

Overlapping subproblems ?
A recursive solution contains a “small” number of
distinct subproblems (repeated many times)

