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Lecture overview 
Dynamic Programming II 

– review  
• key aspects of Dynamic Programming (DP) 
• all-pairs shortest paths as a DP 

– another DP for all-pairs shortest paths 
– longest common subsequence 

CLRS 15.3, 15.4, 25.1, 25.2 



Dynamic Programming 
•  DP ≈ recursion + memoization 
•  Typically (not always) applied to optimization 

problems – ex Fibonaci, Crazy eight, SPPs 

Optimal substructure  
optimal solution to a problem can be obtained 

from optimal solutions to subproblems. 

Overlapping subproblems 
A recursive solution contains a “small” number of 

distinct subproblems (repeated many times) 



Dynamic Programming 

•  DP ≈ recursion + memoization 
•  DP works when: 

– the solution can be produced by combining 
solutions of subproblems;  

– the solution of each subproblem can be produced 
by combining solutions of sub-subproblems, etc;  

moreover …. is efficient if 
– the total number of subproblems arising 

recursively is polynomial.  



All-pairs shortest paths 

•  Input: Directed graph G = (V, E), where |V | = n, 
with edge-weight function w : E → R 

•  Output: n × n matrix of shortest-path lengths δ(i, j) 
for all i, j ∈ V. 



Dynamic Programming Approach 

•  Consider the n × n matrix A = (aij) 
   where aij=w(i,j) if (i,j) ∈ E.  

•  Define dij
(m) = weight of a shortest path from i to j 

that uses at most m edges 
•  We have  

– dij
(0) = 0, if i = j,  

– and dij
(0) = ∞ otherwise;  

CLAIM:  
for m = 1, 2, …, n–1,  dij

(m) = mink{dik
(m–1) + akj}  



Proof of Claim 

…
 

≤ m-1 edges 

≤ m-1 edges i j 

k’s 
dij

(m) = mink{dik
(m–1) + akj }  

for k ← 1 to n  
if dij > dik + akj  

dij ← dik + akj 

Relaxation 



DP Approach, running time 

•  Consider the n × n matrix A = (aij), where aij=w(i,j) 
if (i,j) ∈ E.  

•  Define dij
(m) = weight of a shortest path from i to j 

that uses at most m edges 
We have 

– dij
(0) = 0, if i = j,  

– and dij
(0) = ∞ otherwise;  

CLAIM:  
for m = 1, 2, …, n–1,  dij

(m) = mink{dik
(m–1) + akj}  

O(n4) - similar to n runs of Bellman-Ford 



Dynamic Programming 
•  DP ≈ recursion + memoization 
•  Typically (not always) applied to optimization 

problems 

Optimal substructure ?  
optimal solution to a problem can be obtained 

from optimal solutions to subproblems. 

Overlapping subproblems ? 
A recursive solution contains a “small” number of 

distinct subproblems (repeated many times) 



Another DP Approach 

•  Consider again the n × n matrix A = (aij) 
  where aij=w(i,j) if (i,j) ∈ E.  

•  Define dij
(k) = weight of a shortest path from i to j for 

which all intermediate vertices are chosen among 
{1,2, ..., k} 

•  CLAIM:  
– dij

(k) = aij if k=0,  
– dij

(k) = min{dij
(k-1),dik

(k–1) +dkj
(k–1)} if k≥1;  

O(n3) running time (Floyd-Warshall) 



Dynamic Programming 
•  DP ≈ recursion + memoization 
•  Typically (not always) applied to optimization 

problems 

Optimal substructure ? 
optimal solution to a problem can be obtained 

from optimal solutions to subproblems. 

Overlapping subproblems ? 
A recursive solution contains a “small” number of 

distinct subproblems (repeated many times) 



Longest Common Subsequence 

•  given two sequences x[1..m] and y[1..n], find a 
longest subsequence LCS(x,y) common to both: 

 x:   A  B  C  B  D  A  B 

 y:   B  D  C  A  B  A 

•  denote the length of a sequence s by |s| 
•  let us first try to get |LCS(x,y)| 



Brute force solution 

•  For every subsequence of x[1..m] , check if 
it is a subsequence of y[1..n] 

•  Analysis 
– 2m subsequences of x  
– each check takes Ο(n) time ... 
– worst case running time is  Ο(n2m) 

•  Pretty bad (brute!) 



Using prefixes 
•  consider prefixes of x and y 

– x[1..i] ith prefix of x[1..m] 
– y[1..j] jth prefix of y[1..n] 

•  define c[i,j] = |LCS(x[1..i],y[1..j])| 

•  so c[m,n] = |LCS(x,y)| 

•  recurrence? 



1) x[1..i] and y[1..j] end with xi=yj 

x1  x2   … xi-1   xi 

y1 y2     …    yj-1  yj=xi 

z1 z2…zk-1  zk =yj=xi 

Zk is Zk -1 followed by zk = yj = xi where  
Zk-1 is an  LCS of x[1..i-1] and y[1..j-1] 

            c(i, j) = c(i-1, j-1)+1 



Example - use of property 1 

x:   B  A  N  A  N  A 

y:   A  T  A  N  A 

by inspection LCS of B A N and A T is A 
so LCS(x,y) is A A N A 



2) x[1..i] and y[1..j] end with xi ≠ yj 

x1  x2   … xi-1   xi 

y1 y2     …    yj-1  yj 

Zk z1 z2…zk-1  zk ≠yj 

LCS of x[1..i] and y[1..j-1] 

x1  x2   … xi-1   x i 

yj y1 y2     …yj-1  yj 

Zk z1 z2…zk-1  zk ≠ xi 

c(i, j)=max{c(i, j-1), c(i-1, j)} 

LCS of x[1..i-1] and y[1..j] 



Example: use of property 2 

 The last character of  the LCS(x,y) either: 
– ends with a G => can’t end with a K 

• => can remove K from y 
– doesn’t end with a G 

• => can remove G from x 

x:   A  B  C  D  E  F  G 

y:   B  C  D  G  K 



A recurrence, summary 
•  consider prefixes of x and y 

– x[1..i] ith prefix of x[1..m] 
– y[1..j] jth prefix of y[1..n] 

•  define c[i,j] = |LCS(x[1..i],y[1..j])| 
– so c[m,n] = |LCS(x,y)| 

•  recurrence: 

€ 

c[i, j] =
c[i −1, j −1] +1                  if xi = y j

max{c[i −1, j],c[i, j −1]}  otherwise

⎧ 
⎨ 
⎩ 



Solving LCS with DP 

•  running time is .... 
– O(n×m) € 

c[i, j] =
c[i −1, j −1] +1                  if xi = y j

max{c[i −1, j],c[i, j −1]}  otherwise

⎧ 
⎨ 
⎩ 



Dynamic Programming 
•  DP ≈ recursion + memoization 
•  Typically (not always) applied to optimization 

problems 

Optimal substructure ?  
optimal solution to a problem can be obtained 

from optimal solutions to subproblems. 

Overlapping subproblems ? 
A recursive solution contains a “small” number of 

distinct subproblems (repeated many times) 


