6.006- Introduction to Algorithms

Lecture 16
Prof. Patrick Jaillet



Lecture overview

Shortest paths 111

— Bellman-Ford on a y)
DAG (CLRS 24.2)

— D1jkstra algorithm for
the case with non-

negative weights
(CLRS 24.3)




This graph has a special structure: DAG.
How to use it within Bellman-Ford?

E:{(vag); (V19V4); (V29V3); (V4,V2)}

... from lecture 15: think about 1t for next time ...



... first use topological sorting ...

So™ Yoo

E={(v;,v,); (v;,v)); (V5,v3); (VyV))§ E={(v;,v)); (v1,v3); (V5,05); (V3,0)) )




... Bellman-Ford ...

EZ{(V],VZ); (V19V3); (V2»V3); (V3>V4)}

end of first iteration

and we are done !

the shortest paths from v,



Bellman-Ford algorithm on DAG

topologically sort the vertices V

(f: V=Ll 2 ..., |V|}such that (u,v) e E=f(u) <f(v))
arrange E in lexicographical order of (f{e.a), f(e.b)) 0, ( n_l_m)

O—0O)

e.a e eb

dls] < 0; n[s] < s

for each v € V' — {5} -~ initialization O(n)
do d[v] < oo; n[v] == nil/

do for each edge (1, v) E E ) )
do if d[v] > d[u] + w(u, ) one ieration of ;)
then d[v] < d[u] + w(u, v) [ relaxation steps
n[v] < u

-

for each edge 4u, v= £ )
do if d|v] >Xr w(u, v) - final steps not
then réporda negative cycle )  y00ded




... wWhy does this work? ...

* there are no cycles 1n a dag => even with
negative-weight edges, there are no
negative-weight cycles ...

* topological ordering implies a linear
ordering of the vertices; every path in a dag
1s a subsequence of topologically sorted
vertex order; processing vertices in that
order, an edge can’t be relaxed more than
once ...



The case of non-negative weights

Problem: Given a directed graph G = (V, E) with
edge-weight function w : £ — R+, and a node s, find
the shortest-path weight o(s, v) (and a corresponding
shortest path) from s to each v in V.

Greedy iterative approach

1. maintain a set S of vertices whose shortest-path
distances from s are known.

2. at each step add to S the vertex v € J/— .S whose
distance estimate from s 1s minimal.

3. update distance estimates of vertices adjacent to v.



Dijkstra’s algorithm

d[s] <0
for cachveE V- {5}
do d[v] <= x - initialization
S<—
OV )
while O = (O min-priority queue maintaining 7 — 5)
do © <— EXTRACT-MIN(Q)
S<—SU {u}
for each v € Adj|u] ]
do if d[v] > d[u] + w(u, v) _relaxation

then d[v] T dlu] + w(u, v) steps

(Implicit DECREASE-KEY)



[Digression - Min- Priority Queue (see Lect 9)]

This 1s an implementing a set S of elements,
each associated with a key, supporting the following operations:

insert element x into set S

return element of S with smallest key

return element of S with smallest key and
remove it from S

change the key-value of element x to the
value k& (assumed to not larger than
current value)



Dijkstra: Example

initialization

QO =V, a = EXTRACT-MIN(Q)



Dijkstra: Example

(OC,-)

1st iteration

2nd iteration




Dijkstra: Example

3rd iteration

4th iteration




Dijkstra: Example

5th 1teration

6th 1teration




Dijkstra: Example

7th 1teration

&th 1teration




Dijkstra: Example

(3’a)+ 7

Oth iteration

(17,h)*

Shortest-path tree (3,a)*@ =@

3

(0,%)7




Correctness — Part 1

Lemma. Initializing d|s| <— 0 and d|v| <= o {for all
vE V— {s} establishes d[v] = o(s, v) forall vE
and this invariant 1s maintained over any sequence
of relaxation steps.

Proof. Recall relaxation step:
if d[v] > d[u] + w(u, v) set d[v] < d[u] + w(u, v)

du]

w(u, v



Correctness — Part 11

Theorem. Dikstra’s algorithm terminates with
dlvl=0(s,v) forallve V.

Proof.

e [t suffices to s

when v 1s added

how that d[v] = o(s, v) forevery v E V/
| t0 S

* Suppose 1 18 t]
= 0(s, u) . Lety

he first vertex added to S for which ||
be the first vertex in //— S along a

shortest path from s to u, and let x be 1ts predecessor:

>

_—

N0

S, just before

adding u.



Correctness — Part 11 (continued)

L (4
(5 Q’Q

e Since u 1s the first vertex violating the claimed invariant,
we have d[x] = o(s, x)

 Since subpaths of shortest paths are shortest paths, 1t
follows that d[y] was set to o(s, x) + w(x, v) = 0(s, y) just
after x was added to §

* Consequently, we have d|y]| = 0(s, y) = 0(s, u) < d|u]

* But, d[y| > d[u] since the algorithm chose u first=>a
contradiction



