6.006- Introduction to Algorithms

Lecture 15
Prof. Patrick Jaillet

Lecture overview

Shortest paths II
— Review, definition, properties, generic algorithm

— Bellman-Ford algorithm for the case with
negative weights (CLRS 24.1)

NEGATIVE EDGE WEIGHTS

INPUT CORRECT

\VARVAV4

Single source shortest path problem

Problem: Given a directed graph G = (V/, £) with
edge-weight function w : £ — R, and a node s, find

the shortest-path weight o(s, v) (and a corresponding
shortest path) from s to each v in V.

Special cases:
1. 1f no path from s to v exists: (s, v) = @

2. 1f negative weight cycles in G => problem 1is not
well defined.

Negative cycles ...

with such cycles => problem 1s not well defined.

Optimal substructure

Theorem. A subpath of a shortest path is a
shortest path.

Proof. By contradiction ...

Triangle inequality

Theorem. Forall v, v. x € I/, we have
o(u, v) = o(u, x) + o(x, v).

Proof.

Generic algorithm, data structures

* d[v] = length of best path from s to v so far

 1nitialization d[s| = 0; d[v]| = o otherwise

* 1dea: 1teratively decrease d|v| (while
maintaining d[v| > (s, v))

» 1t|v] = predecessor of v on a best path so far

 1mitialization nt[s| = s; n[v] = nil otherwise

A generic algorithm

dls] <0 3
ms] < s e e
for eachvE V- {5} - initialization
do d[v] < 00
n[v] < nil)

'\

while there 1s an edge (1, v) € E's. L.
dlv] > dlu] + w(u, v) do

select one such edge “somehow” F elaxation
set d[v] <= d[u] + w(u, v) steps
n[v] < u
endwhile g

(... about the “somehow” step ...)

... doesn’t stop when negative
cycles ...

... bad choice of “somehow” can
lead to exponential running time ...

4 2]
4 8 10 12 13 14

relax (v, v,) 13
relax (v, v;) relax (v, V;) 10 11 12
relax (v,, v,) relax (v;, v,) 11
relax (v, v,) 4 6 8 ’ 10
relax (vs, v,) ;

4 6 7 3
relax (v, vs) 7
relax (vs, vy) relax (vg, v,) relax (vs, v,)

Bellman-Ford algorithm
d[s] < 0 |
n[s] < s
for each v € 1/~ {5} " initialization O(n)
do d[v] <=
n[v] < nil
fori<—1to |V|-1

do for each edge (v, v) E £ relaxation
do if d[v] > d[u] + w(u, v) -
then d[v] <— d[u] + w(u, v) steps O(mn)

n[v] < u ,

~

for each edge (1, v) EE)
do if d[v] > d[u] + w(u,) - final steps O(m)

then report a negative cycle

Bellman-Ford - example

DD

Assume we scan edges from right to left

4 4
4 4 6 6
4 4 6 6 7 7

If we scan left to right

4 4 6 6 7 7

Bellman-Ford — another example

E={(v;,v,); (Vi,vy); (Va,v3); (VsV) S}

end of first iteration

the shortest paths from v,

Bellman-Ford: Correctness, 1

Theorem 1. If G = (V] E) contains no negative
weight cycles, then at the end of the algorithm,

d/v] =o(s,v) forall v e JV.

Proof. By induction on the following property P(i):

After i 1terations of the relaxation steps:

* 1f d/v]+# oo, 1t 1s the weight of some path from s to v;

* if there 1s a path from s to v with at most ; edges, then
d/v] at most the weight of the shortest path from s to v with
at most 7 edges.

Bellman-Ford: Correctness, 11

Theorem 2. The algorithm correctly reports the
existence of a negative cycle in G = (V, E)

Proof. If G = (V, E) contains a negative cycle, then there is
always an edge that can be relaxed and the algorithm will
then correctly report it.

Conversely 1f the algorithm reports a negative cycle,
then there must be a cycle 1n a shortest path at the end of the
final steps, and this must then be a negative cycle.

This graph has a special structure. Which?
And how to use it with Bellman-Ford?

E:{(vag); (V19V4); (V29V3); (V4,V2)}

... think about 1t for next time ...

