
6.006- Introduction to Algorithms 

Lecture 15 
Prof. Patrick Jaillet 



Lecture overview 
Shortest paths II 

– Review, definition, properties, generic algorithm 
– Bellman-Ford algorithm for the case with 

negative weights (CLRS 24.1) 
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Single source shortest path problem 

Problem: Given a directed graph G = (V, E) with 
edge-weight function w : E → R, and a node s, find 
the shortest-path weight δ(s, v) (and a corresponding 
shortest path) from s to each v in V. 

Special cases: 
1.  if no path from s to v exists:  δ(s, v) = ∞ 
2.  if negative weight cycles in G => problem is not 

well defined. 



Negative cycles ... 

with such cycles  => problem is not well defined. 
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Optimal substructure 

Theorem.  A subpath of a shortest path is a 
shortest path. 

Proof.  By contradiction ... 

p = v0 vi vj vk

p0j pij pjk

pij’



Triangle inequality 

Theorem.  For all u, v, x ∈ V, we have 
δ(u, v) ≤ δ(u, x) + δ(x, v). 

u 

Proof. 
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δ(u, x) δ(x, v) 



Generic algorithm, data structures 

•  d[v] = length of best path from s to v so far 
•  initialization d[s] = 0; d[v] = ∞ otherwise 
•  idea: iteratively decrease d[v] (while 

maintaining  d[v] ≥ δ(s, v)) 

•  π[v] = predecessor of v on a best path so far 
•  initialization π[s] = s; π[v] = nil otherwise 



A generic algorithm  
d[s] ← 0 
π[s] ← s 
for each v ∈ V – {s} 

do d[v] ← ∞	


      π[v] ← nil    	



initialization 

while there is an edge (u, v) ∈ E s. t.  
         d[v] > d[u] + w(u, v) do 
   select one such edge “somehow” 
   set d[v] ← d[u] + w(u, v) 
         π[v] ← u 
endwhile 

relaxation 
steps 

(... about the “somehow” step ...)  



... doesn’t stop when negative 
cycles ... 
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... bad choice of “somehow” can 
lead to exponential running time ...  
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relax (v1, v2) 
relax (v2, v3) 

relax (v6, v7) 
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relax (v3, v5) 

relax (v3, v4) .... 

relax (v5, v6) relax (v6, v7) relax (v5, v7) 

relax (v1, v3) 
relax (v3, v4) 



Bellman-Ford algorithm  
d[s] ← 0 
π[s] ← s 
for each v ∈ V – {s} 

do d[v] ← ∞	


      π[v] ← nil    	



initialization 

for i ← 1 to  |V|-1 
   do for each edge (u, v) ∈ E  
       do if  d[v] > d[u] + w(u, v) 
                 then d[v] ← d[u] + w(u, v) 
                          π[v] ← u                    

relaxation 
steps 

for each edge (u, v) ∈ E  
   do if  d[v] > d[u] + w(u, v) 
             then report a negative cycle 

final steps O(m) 

O(n) 

O(mn) 



Bellman-Ford - example 
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Assume we scan edges from right to left 
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Bellman-Ford – another example 

E={(v1,v2); (v1,v4); (v2,v3); (v4,v2)}   
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Bellman-Ford: Correctness, I 

Theorem 1. If G = (V, E) contains no negative 
weight cycles, then at the end of the algorithm,  
d[v] = δ(s,v) for all v ∈ V. 

Proof. By induction on the following property P(i):     
After i iterations of the relaxation steps: 
•   if d[v]≠ ∞, it is the weight of some path from s to v; 
•   if there is a path from s to v with at most i edges, then  
d[v] at most the weight of the shortest path from s to v with 
at most i edges. 



Bellman-Ford: Correctness, II 

Theorem 2. The algorithm correctly reports the 
existence of a negative cycle in G = (V, E) 

Proof. If G = (V, E) contains a negative cycle, then there is 
always an edge that can be relaxed and the  algorithm will 
then correctly report it.  
            Conversely if the algorithm reports a negative cycle, 
then there must be a cycle in a shortest path at the end of the 
final steps, and this must then be a negative cycle. 



This graph has a special structure. Which? 
And how to use it with Bellman-Ford? 

E={(v1,v2); (v1,v4); (v2,v3); (v4,v2)}   
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... think about it for next time ... 


