
6.006- Introduction to Algorithms

Lecture 15
Prof. Patrick Jaillet

Lecture overview
Shortest paths II

– Review, definition, properties, generic algorithm
– Bellman-Ford algorithm for the case with

negative weights (CLRS 24.1)

NO

s

Single source shortest path problem

Problem: Given a directed graph G = (V, E) with
edge-weight function w : E → R, and a node s, find
the shortest-path weight δ(s, v) (and a corresponding
shortest path) from s to each v in V.

Special cases:
1.  if no path from s to v exists: δ(s, v) = ∞
2. if negative weight cycles in G => problem is not

well defined.

Negative cycles ...

with such cycles => problem is not well defined.

A

B
S

C

D

E

2

-2

1

3
4

2
-6

Optimal substructure

Theorem. A subpath of a shortest path is a
shortest path.

Proof. By contradiction ...

p = v0 vi vj vk

p0j pij pjk

pij’

Triangle inequality

Theorem. For all u, v, x ∈ V, we have
δ(u, v) ≤ δ(u, x) + δ(x, v).

u

Proof.

x

v δ(u, v)

δ(u, x) δ(x, v)

Generic algorithm, data structures

•  d[v] = length of best path from s to v so far
•  initialization d[s] = 0; d[v] = ∞ otherwise
•  idea: iteratively decrease d[v] (while

maintaining d[v] ≥ δ(s, v))

•  π[v] = predecessor of v on a best path so far
•  initialization π[s] = s; π[v] = nil otherwise

A generic algorithm
d[s] ← 0
π[s] ← s
for each v ∈ V – {s}

do d[v] ← ∞	

   π[v] ← nil 	

initialization

while there is an edge (u, v) ∈ E s. t.
 d[v] > d[u] + w(u, v) do
 select one such edge “somehow”
 set d[v] ← d[u] + w(u, v)
 π[v] ← u
endwhile

relaxation
steps

(... about the “somehow” step ...)

... doesn’t stop when negative
cycles ...

0
v

1 3 4

-1

u

d[u]

1 2 1

1 -4

0
-1
-2

2
1
0

etc

s

d[s]

... bad choice of “somehow” can
lead to exponential running time ...

v1 v2 v3 v4 v5 v7 v6

4

4 4

2

2 2 1 1

1

4 8 10 12 13 14
13

10 11 12
11

4 6 8 9 10
9

6 7 8
7

relax (v1, v2)
relax (v2, v3)

relax (v6, v7)
relax (v5, v7)
relax (v3, v5)

relax (v3, v4)

relax (v5, v6) relax (v6, v7) relax (v5, v7)

relax (v1, v3)
relax (v3, v4)

Bellman-Ford algorithm
d[s] ← 0
π[s] ← s
for each v ∈ V – {s}

do d[v] ← ∞	

   π[v] ← nil 	

initialization

for i ← 1 to |V|-1
 do for each edge (u, v) ∈ E
 do if d[v] > d[u] + w(u, v)
 then d[v] ← d[u] + w(u, v)
 π[v] ← u

relaxation
steps

for each edge (u, v) ∈ E
 do if d[v] > d[u] + w(u, v)
 then report a negative cycle

final steps O(m)

O(n)

O(mn)

Bellman-Ford - example

v1 v2 v3 v4 v5 v7 v6

4

4 4

2

2 2 1 1

1

4 6 6 7 7 4

If we scan left to right

Assume we scan edges from right to left
4 4
4 4
4 4

6 6
6 6 7 7

Bellman-Ford – another example

E={(v1,v2); (v1,v4); (v2,v3); (v4,v2)}

v1 v4

v2

-4

5

2

v3
2

0

∞ ∞

∞

2 ⁄ ⁄ 4

⁄ 5

1 ⁄
end of first iteration

⁄ 3
end of second iteration

the shortest paths from v1

Bellman-Ford: Correctness, I

Theorem 1. If G = (V, E) contains no negative
weight cycles, then at the end of the algorithm,
d[v] = δ(s,v) for all v ∈ V.

Proof. By induction on the following property P(i):
After i iterations of the relaxation steps:
•  if d[v]≠ ∞, it is the weight of some path from s to v;
•  if there is a path from s to v with at most i edges, then
d[v] at most the weight of the shortest path from s to v with
at most i edges.

Bellman-Ford: Correctness, II

Theorem 2. The algorithm correctly reports the
existence of a negative cycle in G = (V, E)

Proof. If G = (V, E) contains a negative cycle, then there is
always an edge that can be relaxed and the algorithm will
then correctly report it.
 Conversely if the algorithm reports a negative cycle,
then there must be a cycle in a shortest path at the end of the
final steps, and this must then be a negative cycle.

This graph has a special structure. Which?
And how to use it with Bellman-Ford?

E={(v1,v2); (v1,v4); (v2,v3); (v4,v2)}

v1 v4

v2

-4

5

2

v3
2

... think about it for next time ...

