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Graphs 

•  G=(V,E) 
•  V a set of vertices 

 Usually number denoted by n 

•  E ⊆ VxV a set of edges (pairs of vertices) 
 Usually number denoted by m 

•  Flavors: 
  Pay attention to order of vertices in edge: directed graph 
  Ignore order: undirected graph 



Examples 

•  Undirected 
•  V={a,b,c,d} 
•  E={{a,b}, {a,c}, {b,c}, 

{b,d}, {c,d}} 

•  Directed 
•  V = {a,b,c} 
•  E = {(a,c), (a,b) (b,c), (c,b)}  
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Breadth First Search 
•  Start with vertex v 
•  List all its neighbors (distance 1) 
•  Then all their neighbors (distance 2) 
•  Etc. 



Depth First Search 
•  Exploring a maze 
•  From current vertex, move to another 
•  Until you get stuck 
•  Then backtrack till you find the first new 

possibility for exploration 



BFS/DFS Algorithm Summary 
•  Maintain “todo list” of vertices to be scanned 

•  Until list is empty 
  Take a vertex v from front of list 
 Mark it scanned 
  Examine all outgoing edges (v,u) 
  If u not marked, add to the todo list 

•  BFS: add to end of todo list  
•  DFS: add to front of todo list 

(queue: FIFO) 
 (recursion stack: LIFO) 



Queues and Stacks 
•  BFS queue is explicit 

  Created in pieces 
  (level 0 vertices) . (level 1 vertices) . (level 2 

vert… 
  the frontier at iteration i is piece i of vertices in 

queue 
•  DFS stack is implicit 

  It’s the call stack of the python interpreter 
  From v, recurse on one child at a time 
  But same order if put all children on stack, then 

pull off (and recurse) one at a time 



Runtime Summary 
•  Each vertex scanned once 

  When scanned, marked 
  If marked, not (re)added to todo list 
  Constant work per vertex 

•  Removing from queue 
•  Marking 

  O(n) total 
•  Each edge scanned once 

  When tail vertex of edge is scanned 
  Constant work per edge (checking mark on head) 
  O(m) total 

•  In all, O(n+m) 



Connected Components 



Connected Components 
•  Undirected graph G=(V,E) 
•  Two vertices are connected if there is a path 

between them 
•  An equivalence relation 
•  Equivalence classes are called components 

 A set of vertices all connected to each other 



Algorithm 
•  DFS/BFS reaches all vertices reachable from 

starting vertex s 
•  i.e., component of s 
•  Mark all those vertices as “owned by” s 



Algorithm 
•  DFS-visit (u, owner, o) 

 #mark all nodes reachable from u with owner o 
 for v in Adj[u] 
     if v not in owner         #not yet seen 
  owner[v] = o         #instead of parent 
  DFS-visit (v, owner, o) 

•  DFS-Visit(s, owner, s) will mark owner[v]=s for 
any vertex reachable from s 



Algorithm 
•  Find component for s by DFS from s 
•  So, just search from every vertex to find all 

components  
•  Vertices in same component will receive the 

same ownership labels 
•  Cost? 

  n times BFS/DFS? 
  ie, O(n(m+n))? 



Better Algorithm 
•  If vertex has already been reached, don’t need to 

search from it! 
  Its connected component already marked with owner 

•  owner = {} 
for s in V 
    if not(s in owner) 
        DFS-Visit(s, owner, s)   #or can use BFS 

•  Now every vertex examined exactly twice 
  Once in outer loop and once in DFS-Visit 

•  And every edge examined once 
  In DFS-Visit when its tail vertex is examined 

•  Total runtime to find components is O(m+n) 



Directed Graphs 
•  In undirected graphs, connected components 

can be represented in n space 
 One “owner label” per vertex 

•  Can ask to compute all vertices reachable from 
each vertex in a directed graph 
  i.e. the “transitive closure” of the graph 
 Answer can be different for each vertex 
  Explicit representation may be bigger than graph 
  E.g. size n graph with size n2 transitive closure 



Topological Sort 



Job Scheduling 
•  Given  

 A set of tasks 
  Precedence constraints  

•  saying “u must be done before v” 

  Represented as a directed graph 
•  Goal: 

  Find an ordering of the tasks that satisfies all 
precedence constraints 
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Existence 
•  Is there a schedule? 

Fix hole 
in bucket 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Water 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DAG 
•  Directed Acyclic Graph 

 Graph with no cycles 

•  Source: vertex with no incoming edges 
•  Claim: every DAG has a source 

  Start anywhere, follow edges backwards 
  If never get stuck, must repeat vertex 
  So, get stuck at a source 

•  Conclude: every DAG has a schedule 
  Find a source, it can go first 
  Remove, schedule rest of work recursively 



Algorithm I (for DAGs) 
•  Find a source 

  Scan vertices to find one with no incoming edges 
 Or use DFS on backwards graph 

•  Remove, recurse 
•  Time to find one source 

 O(m) with standard adjacency list representation 
  Scan all edges, count occurrence of every vertex 

as tail 
•  Total: O(nm) 



Algorithm 2 (for DAGs) 
•  Consider DFS 
•  Observe that we don’t return from recursive call 

to DFS(v) until all of v’s children are finished 
•  So, “finish time” of v is later than finish time of 

all children 
•  Thus, later than finish time of all descendants 

  i.e., vertices reachable from v 
 Descendants well-defined since no cycles 

•  So, reverse of finish times is valid schedule 



Implementation (of Alg 2) 
•  seen = {}; finishes = {}; time = 0 

•  TopologicalSort 
 for s in V 
     DFS-visit(s) 

•  Sort vertices by finishes[] key 

only set finishes if 
done processing all 
edges leaving v 

DFS-visit (s) 
for v in Adj[s] 

if v not in seen          
seen[v] = 1          
DFS-visit (v) 
time = time+1 
finishes[v] = time 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Analysis 
•  Just like connected components DFS 

  Time to DFS-Visit from all vertices is O(m+n) 
  Because we do nothing with already seen vertices 

•  Might DFS-visit a vertex v before its ancestor u 
  i.e., start in middle of graph 
 Does this matter? 
 No, because finish[v] < finish[u] in that case 



Handling Cycles 
•  If two jobs can reach each other, we must do 

them at same time 
•  Two vertices are strongly connected if each 

can reach the other  
•  Strongly connected is an equivalence relation 

  So graph has strongly connected components 

•  Can we find them? 
 Yes, another nice application of DFS 
  But tricky (see CLRS) 
 You should understand algorithm, not proof 


