
6.006- Introduction to Algorithms

Lecture 13
Prof. Constantinos Daskalakis

CLRS 22.4-22.5

Graphs

•  G=(V,E)
•  V a set of vertices

 Usually number denoted by n

•  E ⊆ VxV a set of edges (pairs of vertices)
 Usually number denoted by m

•  Flavors:
  Pay attention to order of vertices in edge: directed graph
  Ignore order: undirected graph

Examples

•  Undirected
•  V={a,b,c,d}
•  E={{a,b}, {a,c}, {b,c},

{b,d}, {c,d}}

•  Directed
•  V = {a,b,c}
•  E = {(a,c), (a,b) (b,c), (c,b)}

a b

c d

a

b c

Breadth First Search
•  Start with vertex v
•  List all its neighbors (distance 1)
•  Then all their neighbors (distance 2)
•  Etc.

Depth First Search
•  Exploring a maze
•  From current vertex, move to another
•  Until you get stuck
•  Then backtrack till you find the first new

possibility for exploration

BFS/DFS Algorithm Summary
•  Maintain “todo list” of vertices to be scanned

•  Until list is empty
  Take a vertex v from front of list
 Mark it scanned
  Examine all outgoing edges (v,u)
  If u not marked, add to the todo list

•  BFS: add to end of todo list
•  DFS: add to front of todo list

(queue: FIFO)
 (recursion stack: LIFO)

Queues and Stacks
•  BFS queue is explicit

  Created in pieces
  (level 0 vertices) . (level 1 vertices) . (level 2

vert…
  the frontier at iteration i is piece i of vertices in

queue
•  DFS stack is implicit

  It’s the call stack of the python interpreter
  From v, recurse on one child at a time
  But same order if put all children on stack, then

pull off (and recurse) one at a time

Runtime Summary
•  Each vertex scanned once

  When scanned, marked
  If marked, not (re)added to todo list
  Constant work per vertex

•  Removing from queue
•  Marking

  O(n) total
•  Each edge scanned once

  When tail vertex of edge is scanned
  Constant work per edge (checking mark on head)
  O(m) total

•  In all, O(n+m)

Connected Components

Connected Components
•  Undirected graph G=(V,E)
•  Two vertices are connected if there is a path

between them
•  An equivalence relation
•  Equivalence classes are called components

 A set of vertices all connected to each other

Algorithm
•  DFS/BFS reaches all vertices reachable from

starting vertex s
•  i.e., component of s
•  Mark all those vertices as “owned by” s

Algorithm
•  DFS-visit (u, owner, o)

 #mark all nodes reachable from u with owner o
 for v in Adj[u]
 if v not in owner #not yet seen
 owner[v] = o #instead of parent
 DFS-visit (v, owner, o)

•  DFS-Visit(s, owner, s) will mark owner[v]=s for
any vertex reachable from s

Algorithm
•  Find component for s by DFS from s
•  So, just search from every vertex to find all

components
•  Vertices in same component will receive the

same ownership labels
•  Cost?

  n times BFS/DFS?
  ie, O(n(m+n))?

Better Algorithm
•  If vertex has already been reached, don’t need to

search from it!
  Its connected component already marked with owner

•  owner = {}
for s in V
 if not(s in owner)
 DFS-Visit(s, owner, s) #or can use BFS

•  Now every vertex examined exactly twice
  Once in outer loop and once in DFS-Visit

•  And every edge examined once
  In DFS-Visit when its tail vertex is examined

•  Total runtime to find components is O(m+n)

Directed Graphs
•  In undirected graphs, connected components

can be represented in n space
 One “owner label” per vertex

•  Can ask to compute all vertices reachable from
each vertex in a directed graph
  i.e. the “transitive closure” of the graph
 Answer can be different for each vertex
  Explicit representation may be bigger than graph
  E.g. size n graph with size n2 transitive closure

Topological Sort

Job Scheduling
•  Given

 A set of tasks
  Precedence constraints

•  saying “u must be done before v”

  Represented as a directed graph
•  Goal:

  Find an ordering of the tasks that satisfies all
precedence constraints

No#ce that 
I’m late 

Look up 
(at clock) 

Drink a cup 

Find my way 
downstairs 

Wake up 

Drag a comb 
across my head 

Fall out of bed 
Make bus in 
seconds flat 

Grab my hat 

Find my 
coat 

No#ce I’m 
late 

Look up 
Drink a cup 

Find my way 
downstairs 

Wake up 

Drag a comb 
across my head 

Fall out of bed 

Make the bus 
in seconds flat 

Grab my hat 

Find my 
coat 

10 

9 

8 
7 

6 
5 

4 

3 

2 
1 

Existence
•  Is there a schedule?

Fix hole 
in bucket 

Fetch 
Water 

Sharpen 
Axe 

Cut 
straw 

Whet 
Stone 

DAG
•  Directed Acyclic Graph

 Graph with no cycles

•  Source: vertex with no incoming edges
•  Claim: every DAG has a source

  Start anywhere, follow edges backwards
  If never get stuck, must repeat vertex
  So, get stuck at a source

•  Conclude: every DAG has a schedule
  Find a source, it can go first
  Remove, schedule rest of work recursively

Algorithm I (for DAGs)
•  Find a source

  Scan vertices to find one with no incoming edges
 Or use DFS on backwards graph

•  Remove, recurse
•  Time to find one source

 O(m) with standard adjacency list representation
  Scan all edges, count occurrence of every vertex

as tail
•  Total: O(nm)

Algorithm 2 (for DAGs)
•  Consider DFS
•  Observe that we don’t return from recursive call

to DFS(v) until all of v’s children are finished
•  So, “finish time” of v is later than finish time of

all children
•  Thus, later than finish time of all descendants

  i.e., vertices reachable from v
 Descendants well-defined since no cycles

•  So, reverse of finish times is valid schedule

Implementation (of Alg 2)
•  seen = {}; finishes = {}; time = 0

•  TopologicalSort
 for s in V
 DFS-visit(s)

•  Sort vertices by finishes[] key

only set finishes if
done processing all
edges leaving v

DFS-visit (s) 
for v in Adj[s] 

if v not in seen  
seen[v] = 1
DFS-visit (v)
time = time+1
finishes[v] = time 

No#ce I’m 
late 

Look up 
(at clock) 

Drink a cup 

Find my way 
downstairs 

Wake up 

Drag a comb 
across my head 

Fall out of bed 

Make bus in 
seconds flat 

Grab my hat 

Find my 
coat 

1 

6 

2 

3 

4 5 

7 

8 

10 
9 

Analysis
•  Just like connected components DFS

  Time to DFS-Visit from all vertices is O(m+n)
  Because we do nothing with already seen vertices

•  Might DFS-visit a vertex v before its ancestor u
  i.e., start in middle of graph
 Does this matter?
 No, because finish[v] < finish[u] in that case

Handling Cycles
•  If two jobs can reach each other, we must do

them at same time
•  Two vertices are strongly connected if each

can reach the other
•  Strongly connected is an equivalence relation

  So graph has strongly connected components

•  Can we find them?
 Yes, another nice application of DFS
  But tricky (see CLRS)
 You should understand algorithm, not proof

