6.006- Introduction to Algorithms

Lecture 13

Prof. Constantinos Daskalakis
CLRS 22.4-22.5



Graphs

G=(V,E)
V a set of vertices

* Usually number denoted by n

E C VXV a set of edges (pairs of vertices)
= Usually number denoted by m

Flavors:
» Pay attention to order of vertices in edge: directed graph

* [gnore order: undirected graph



e Undirected
 V={ab,c,d}

* E={ia,b}, {a,cj,
1b,d}, {c,d};

Examples

{b,C} 2

* Directed
« V={ab,c}
* E={(a,0), (a,b) (b,c), (c,b)}



Breadth First Search

Start with vertex v
List all 1ts neighbors (distance 1)
Then all their neighbors (distance 2)

Etc.



Depth First Search

Exploring a maze
From current vertex, move to another
Until you get stuck

Then backtrack till you find the first new
possibility for exploration




BFS/DFS Algorithm Summary

e Maintain “todo list” of vertices to be scanned

* Until list 1s empty
» Take a vertex v from front of list
* Mark 1t scanned
* Examine all outgoing edges (v,u)
= [f u not marked, add to the todo list

* BFS: add to end of todo list (queue: FIFO)
« DFS: add to front of todo list (recursion stack: LIFO)



Queues and Stacks

* BFS queue 1s explicit
» Created 1n pieces

" (level O vertices) . (level 1 vertices) . (level 2
vert...

» the frontier at iteration i 1s piece i of vertices in
queue

* DFS stack 1s implicit
» [t’s the call stack of the python interpreter
* From v, recurse on one child at a time

» But same order 1f put all children on stack, then
pull off (and recurse) one at a time



Runtime Summary

* Each vertex scanned once
* When scanned, marked
* [f marked, not (re)added to todo list
= Constant work per vertex
* Removing from queue
* Marking
= O(n) total
* Each edge scanned once
* When tail vertex of edge is scanned
* Constant work per edge (checking mark on head)
* O(m) total
* In all, O(n+m)



Connected Components



Connected Components

Undirected graph G=(V,E)

Two vertices are connected 1f there 1s a path
between them

An equivalence relation

Equivalence classes are called components

= A set of vertices all connected to each other

e I




Algorithm

e DFS/BFS reaches all vertices reachable from
starting vertex s

* 1.€., component of s

* Mark all those vertices as “owned by” s



Algorithm

* DFS-visit (u, owner, o)
#mark all nodes reachable from u with owner o

for v in Adj[u]
if v not 1n owner #not yet seen
owner|[v]l=o0 #instead of parent

DFS-visit (v, owner, 0)

* DFS-Visit(s, owner, s) will mark owner[v]=s for
any vertex reachable from s



Algorithm

Find component for s by DFS from s

So, just search from every vertex to find all
components

Vertices 1n same component will recerve the
same ownership labels

Cost?
= n times BFS/DFS?
" 1, O(n(m+n))?



Better Algorithm

If vertex has already been reached, don’t need to
search from 1it!

* Jts connected component already marked with owner

owner = {}
forsnV

if not(s 1 owner)
DFS-Visit(s, owner, s) #or can use BFS

Now every vertex examined exactly twice
* Once 1n outer loop and once in DFS-Visit
And every edge examined once
* In DFS-Visit when its tail vertex 1s examined

Total runtime to find components 1s O(m+n)



Directed Graphs

* In undirected graphs, connected components
can be represented 1n n space

* One “owner label” per vertex
* Can ask to compute all vertices reachable from
each vertex 1n a directed graph
" 1.e. the “transitive closure” of the graph
= Answer can be different for each vertex
= Explicit representation may be bigger than graph

» E.g. size n graph with size n? transitive closure

0 00000




Topological Sort



Job Scheduling

e (31ven
= A set of tasks

» Precedence constraints

* saying “u must be done before v”

» Represented as a directed graph
* Goal:

* Find an ordering of the tasks that satisfies all
precedence constraints



Make busD
seconds fla @II out of bED

Drag a comb

across my head Look up
at clock
@ﬁce that -m
I’'m late Qrink a CUD
C ey e my

downstairs




, _Falloutof bed >

Drag a comb
across my head

Find my way
4 downstairs

5 Drink a cuD

Grab my hat

Make the bus
in seconds flat




Existence

 Is there a schedule? .
Fix hole
in bucket




DAG

Directed Acyclic Graph
* Graph with no cycles

Source: vertex with no incoming edges

Claim: every DAG has a source
» Start anywhere, follow edges backwards
» [f never get stuck, must repeat vertex

= So, get stuck at a source

Conclude: every DAG has a schedule
* Find a source, 1t can go first

* Remove, schedule rest of work recursively



Algorithm I (for DAGS)

Find a source
= Scan vertices to find one with no incoming edges

* Or use DFS on backwards graph
Remove, recurse

Time to find one source
* O(m) with standard adjacency list representation

= Scan all edges, count occurrence of every vertex
as tail

Total: O(nm)



Algorithm 2 (for DAGS)

Consider DFS

Observe that we don’t return from recursive call
to DFS(v) until all of v’s children are finished

So, “finish time” of v 1s later than finish time of
all children

Thus, later than finish time of all descendants
= ].e., vertices reachable from v

* Descendants well-defined since no cycles

So, reverse of finish times 1s valid schedule



Implementation (of Alg 2)

* seen = {}; = {}; time =10

DFS-visit (s)
for v in Adj[s]
if v not 1n seen
seen|v] =1

DFS-visit (v)
time = time+1

|[v] = time

* TopologicalSort

forsinV
DFS-visit(s)

* Sort vertices by

only set if
done processing all
edges leaving v




@II out of bed>

10

Drag a comb
across my head

Find my way
downstairs

Make bus in
seconds flat




Analysis

* Just like connected components DFS
* Time to DFS-Visit from all vertices 1s O(m+n)

» Because we do nothing with already seen vertices

* Might DFS-visit a vertex v before 1ts ancestor u
" i.e., start in middle of graph
* Does this matter?

= No, because finish[v] < finish[u] 1n that case



Handling Cycles

If two jobs can reach each other, we must do
them at same time

Two vertices are strongly connected 1f each
can reach the other

Strongly connected 1s an equivalence relation

» So graph has strongly connected components

Can we find them?

" Yes, another nice application of DFS
* But tricky (see CLRS)
* You should understand algorithm, not proof



