
6.006- Introduction to
Algorithms

Lecture 12
Prof. Constantinos Daskalakis

CLRS 22.2-22.3

Graphs

•  G=(V,E)
•  V a set of vertices

 Usually number denoted by n
•  E ⊆ V × V a set of edges (pairs of vertices)

 Usually number denoted by m
 Note m ≤ n(n-1) = O(n2)

•  Flavors:
  Pay attention to order of vertices in edge: directed graph
  Ignore order: undirected graph

•  Then only n(n-1)/2 possible edges

Examples

•  Undirected
•  V={a,b,c,d}
•  E={{a,b}, {a,c}, {b,c},

{b,d}, {c,d}}

•  Directed
•  V = {a,b,c}
•  E = {(a,c), (a,b) (b,c), (c,b)}

a b

c d

a

b c

Pocket Cube

•  2 × 2 × 2 Rubik’s cube
•  Configurations are

adjacent, if one can be
obtained from the other
by quarter turns

•  Basic Question: is
solved state reachable
with such moves from
the starting state?

Representation

•  To solve graph problems, must examine graph
•  So need to represent in computer
•  Four representations with pros/cons

  Adjacency lists (of neighbors of each vertex)
  Incidence lists (of edges from each vertex)
  Adjacency matrix (of which pairs are adjacent)
  Implicit representation (as neighbor function)

Example

a	

b	

c	

C	

b	
 /	

b	
 /	

c	
 /	

a	

c	
 b	

Searching Graph

•  We want to get from current Rubik state to
“solved” state

•  How do we explore?

Breadth First Search

•  Start with vertex v
•  List all its neighbors (distance 1)
•  Then all their neighbors (distance 2)
•  Etc.

Depth First Search

•  Like exploring a maze
•  From current vertex, move to another
•  Until you get stuck
•  Then backtrack till you find a new place to

explore

Problem: Cycles

•  What happens if unknowingly revisit a vertex?
•  BFS: get wrong notion of distance
•  DFS: may get in circles
•  Solution: mark vertices

  BFS: if you’ve seen it before, ignore
 DFS: if you’ve seen it before, back up

Breadth First Search (BFS)

Outline
•  Initial vertex s

  Level 0

•  For i=1,…
 grow level i
  Find all neighbors of level i-1

vertices
  (except those already seen)
  i.e. level i contains vertices

reachable via a path of i edges
and no fewer

Level	
 1	

Level	
 2	

Level	
 3	

s	

v	

Example

a

c v x z

s d f

1

1
2

2

2 3

3
0

s	

a	

x	

z	

d	

c	

f	

Outline

•  Initial vertex s
  Level 0

•  For i=1,…
 grow level i
  Find all neighbors of level i-1
  (except those already seen)
  i.e. level i contains vertices

reachable via a path of i edges
and no fewer

•  Where can the other edges of the graph be?
 Only between nodes in same or adjacent levels

Level	
 1	

Level	
 2	

Level	
 3	

s	

v	

Example

a

c v x z

s d f

1

1
2

2

2 3

3
0

s	

a	

x	

z	

d	

c	

f	

Algorithm
•  BFS(V,Adj,s)

level={s: 0}; parent = {s: None}; i=1
frontier=[s] #previous level, i-1
while frontier

next=[] #next level, i
for u in frontier

for v in Adj[u]
 if v not in level #not yet seen

 level[v] = i #level of u+1
 parent[v] = u
 next.append(v)	

frontier = next
i += 1	

Analysis: Runtime

•  Vertex v appears at the frontier at most once
  Since then it has a level
 And nodes with a level aren’t added again
  Total time spent adding nodes to frontier O(n)

•  Adj[v] only scanned once
  Just when v is in frontier
  Total time ∑v|| Adj[v] ||

•  This sum counts each “outgoing” edge
•  So O(m) time spend scanning adjacency lists

•  Total: O(m+n) time --- “Linear time”

Analysis: Correctness

•  Claim: If there is a path of L edges from s to v,
then v is added to next when i=L or before

•  Proof: induction
  Base case: s is added before setting i=1
  Path of length L from s to v
  path of length L-1 from s to u, and edge (u,v)
  By induction, add u when i=L-1 or before
  If v has not already been inserted in next before

i=L, it gets added when scan u at i=L
  So it happens when i=L or before

i.e. why are all nodes reachable from s explored?

Shortest Paths

•  From correctness analysis, conclude more:
  Level[v] is length of shortest s—v path

•  Parent pointers form a shortest paths tree
 Which is union of shortest paths to all vertices

•  To find shortest path, follow parent pointers
 Will end up at s

Depth First Search (DFS)

Outline

•  Explore a maze
  Follow path until you get stuck
  Backtrack along breadcrumbs till find new exit
  i.e. recursively explore

Algorithm

•  parent = {s: None}
•  call DFS-visit (V, Adj, s)

Routine DFS-visit (V, Adj, u)
for v in Adj[u]

if v not in parent #not yet seen
parent[v] = u
DFS-visit (V, Adj, v) #recurse!

Demo (from s)

s	
 1	
 (in	
 tree)	

2	
 (in	
 tree)	

3	
 (in	
 tree)	

5	
 (forw
ard	
 edge)	

a	

b	
 c	

s	

a	

b	
 c	

d	

7	
 (cross	
 edge)	

d	

Runtime Analysis

•  Quite similar to BFS
•  DFS-visit only called once per vertex v

  Since next time v is in parent set

•  Edge list of v scanned only once (in that call)
•  So time in DFS-visit is 1/vertex + 1/edge
•  So time is O(n+m)

Correctness?

•  Trickier than BFS
•  Can use induction on length of shortest path

from starting vertex
  Induction Hypothesis: “each vertex at distance k is

visited”
  Induction Step:

•  Suppose vertex v at distance k
•  Then some u at distance k-1 with edge (u,v)
•  u is visited (by induction hypothesis)
•  Every edge out of u is checked
•  If v wasn’t previously visited, it gets visited from u

Edge Classification

•  Tree edge used to get to new child
•  Back edge leads from node to ancestor in tree
•  Forward edge leads to descendant in tree
•  Cross edge leads to a different subtree
•  To label what edge is of what type, keep global

time counter and store interval during which
vertex is on recursion stack

Cross	
 edge	
 Forward	
 edge	

Back	
 edge	

tree	
 edge	

Tradeoffs

•  Solving Rubik’s cube?
  BFS gives shortest solution

•  Robot exploring a building?
  Robot can trace out the exploration path
  Just drops markers behind

•  Only difference is “next vertex” choice
  BFS uses a queue
 DFS uses a stack (recursion)

