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Graphs 

•  G=(V,E) 
•  V a set of vertices 

 Usually number denoted by n 
•  E ⊆ V × V a set of edges (pairs of vertices) 

 Usually number denoted by m 
 Note m ≤ n(n-1) = O(n2) 

•  Flavors: 
  Pay attention to order of vertices in edge: directed graph 
  Ignore order: undirected graph 

•  Then only n(n-1)/2 possible edges 



Examples 

•  Undirected 
•  V={a,b,c,d} 
•  E={{a,b}, {a,c}, {b,c}, 

{b,d}, {c,d}} 

•  Directed 
•  V = {a,b,c} 
•  E = {(a,c), (a,b) (b,c), (c,b)}  
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Pocket Cube 

•  2 × 2 × 2 Rubik’s cube 
•  Configurations are 

adjacent, if one can be 
obtained from the other 
by quarter turns 

•  Basic Question: is 
solved state reachable 
with such moves from 
the starting state? 



Representation 

•  To solve graph problems, must examine graph 
•  So need to represent in computer 
•  Four representations with pros/cons 

  Adjacency lists (of neighbors of each vertex) 
  Incidence lists (of edges from each vertex) 
  Adjacency matrix (of which pairs are adjacent) 
  Implicit representation (as neighbor function) 
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Searching Graph 

•  We want to get from current Rubik state to 
“solved” state 

•  How do we explore? 



Breadth First Search 

•  Start with vertex v 
•  List all its neighbors (distance 1) 
•  Then all their neighbors (distance 2) 
•  Etc. 



Depth First Search 

•  Like exploring a maze 
•  From current vertex, move to another 
•  Until you get stuck 
•  Then backtrack till you find a new place to 

explore 



Problem: Cycles 

•  What happens if unknowingly revisit a vertex? 
•  BFS: get wrong notion of distance 
•  DFS: may get in circles 
•  Solution: mark vertices 

  BFS: if you’ve seen it before, ignore 
 DFS: if you’ve seen it before, back up 



Breadth First Search (BFS) 



Outline 
•  Initial vertex s 

  Level 0 

•  For i=1,…  
 grow level i 
  Find all neighbors of level i-1 

vertices  
  (except those already seen) 
  i.e. level i contains vertices 

reachable via a path of i edges 
and no fewer 
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Outline 

•  Initial vertex s 
  Level 0 

•  For i=1,…  
 grow level i 
  Find all neighbors of level i-1  
  (except those already seen) 
  i.e. level i contains vertices  

reachable via a path of i edges  
and no fewer 

•  Where can the other edges of the graph be? 
 Only between nodes in same or adjacent levels 
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Algorithm 
•  BFS(V,Adj,s) 

level={s: 0}; parent = {s: None}; i=1 
frontier=[s]                         #previous level, i-1 
while frontier 

next=[]                                   #next level, i 
for u in frontier 

for v in Adj[u] 
 if v not in level      #not yet seen 

 level[v] = i           #level of u+1 
 parent[v] = u 
 next.append(v)	
  

frontier = next 
i += 1	
  



Analysis: Runtime 

•  Vertex v appears at the frontier at most once 
  Since then it has a level 
 And nodes with a level aren’t added again 
  Total time spent adding nodes to frontier O(n) 

•  Adj[v] only scanned once 
  Just when v is in frontier 
  Total time ∑v|| Adj[v] ||  

•  This sum counts each “outgoing” edge 
•  So O(m) time spend scanning adjacency lists 

•  Total: O(m+n) time --- “Linear time” 



Analysis: Correctness 

•  Claim: If there is a path of L edges from s to v, 
then v is added to next when i=L or before 

•  Proof: induction 
  Base case: s is added before setting i=1 
  Path of length L from s to v 
  path of length L-1 from s to u, and edge (u,v) 
  By induction, add u when i=L-1 or before 
  If v has not already been inserted in next before 

i=L, it gets added when scan u at i=L 
  So it happens when i=L or before 

i.e. why are all nodes reachable from s explored? 



Shortest Paths 

•  From correctness analysis, conclude more: 
  Level[v] is length of shortest s—v path 

•  Parent pointers form a shortest paths tree 
 Which is union of shortest paths to all vertices 

•  To find shortest path, follow parent pointers 
 Will end up at s 



Depth First Search (DFS) 



Outline 

•  Explore a maze 
  Follow path until you get stuck 
  Backtrack along breadcrumbs till find new exit 
  i.e. recursively explore 



Algorithm 

•  parent = {s: None} 
•  call DFS-visit (V, Adj, s) 

Routine DFS-visit (V, Adj, u) 
for v in Adj[u] 

if v not in parent          #not yet seen 
parent[v] = u 
DFS-visit (V, Adj, v)       #recurse! 



Demo (from s) 
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Runtime Analysis 

•  Quite similar to BFS 
•  DFS-visit only called once per vertex v 

  Since next time v is in parent set 

•  Edge list of v scanned only once (in that call) 
•  So time in DFS-visit is 1/vertex + 1/edge 
•  So time is O(n+m) 



Correctness? 

•  Trickier than BFS 
•  Can use induction on length of shortest path 

from starting vertex 
  Induction Hypothesis: “each vertex at distance k is 

visited” 
  Induction Step:  

•  Suppose vertex v at distance k 
•  Then some u at distance k-1 with edge (u,v) 
•  u is visited (by induction hypothesis) 
•  Every edge out of u is checked 
•  If v wasn’t previously visited, it gets visited from u 



Edge Classification 

•  Tree edge used to get to new child 
•  Back edge leads from node to ancestor in tree 
•  Forward edge leads to descendant in tree 
•  Cross edge leads to a different subtree 
•  To label what edge is of what type, keep global 

time counter and store interval during which 
vertex is on recursion stack 

Cross	
  edge	
   Forward	
  edge	
  
Back	
  edge	
  

tree	
  edge	
  



Tradeoffs 

•  Solving Rubik’s cube? 
  BFS gives shortest solution 

•  Robot exploring a building? 
  Robot can trace out the exploration path 
  Just drops markers behind 

•  Only difference is “next vertex” choice 
  BFS uses a queue 
 DFS uses a stack  (recursion) 


