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Menu

• Problem: peak finding

– 1 dimension

– 2 dimensions

• Technique: Divide and conquer

• details about the 1st pset in the end of the lecture



Peak Finding: 1D

• Consider an array A[1…n] :

• An element A[i] is a peak if it is not smaller than 
its neighbor(s). I.e., 

– if i ≠ 1, n : A[i]≥A[i-1] and A[i]≥A[i+1]

– If i=1 :  A[1] ≥ A[2]

– If i=n :  A[n] ≥ A[n-1]

• Problem: find any peak.
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Peak Finding: Ideas ?

• Algorithm I:

– Scan the array from left to right

– Compare each A[i] with its neighbors

– Exit when found a peak

• Complexity: 

– Might need to scan all elements, so T(n)=(n)



Peak Finding: Ideas II ?

• Algorithm II:

• Consider the middle element of the array 
and compare with neighbors

– If A[n/2-1]>A[n/2]

then search for a peak among A[1]… A[n/2-1]

– Else, if A[n/2]<A[n/2+1]

then search for a peak among A[n/2]… A[n]

– Else A[n/2] is a peak! 

(since A[n/2-1]≤A[n/2] and A[n/2] ≥A[n/2+1] )

• Running time ?



Algorithm II: Complexity



Algorithm II: Complexity

• We have

• Unraveling the recursion, 

T(n)= (1) + (1) +…+ (1)  = (log n)

• log n is much much better than n !

Recursion

Time for comparing 

A[n/2] with neighbors

log2 n

T(n) = T(n/2) + (1)

Time needed to find 

peak in array of length n



Divide and Conquer

• Very powerful design tool:

– Divide input into multiple disjoint parts

– Conquer each of the parts separately 
(using recursive call)

• Occasionally, we need to combine results 
from different calls (not used here)



• Consider a 2D array A[1…n, 1…m] :

• An element A[i] is a 2D peak if it is not smaller than its (at 
most 4) neighbors.

• Problem: find any 2D peak.

Peak Finding: 2D
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2D Peak Finding: Ideas?



Algorithm I: use the 1D algorithm

• Algorithm I:

– For each column j, find its global maximum B[j]

– Apply 1D peak finder to find a peak  (say B[j]) 
of B[1...m]

• Running time ?

…is (nm)

• Correctness:

– B[j] not smaller than B[j-1], B[j+1]

– For any k,  B[k] not smaller than any element 
from the k-th column of A

– Therefore, B[j] not smaller than any element 
from the columns j-1, j and j+1 of A

– But this includes all neighbors of B[j] in A, so 
B[j] is a peak in A
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Algorithm I’: use the 1D algorithm

• Observation: 1D peak finder uses 
only O(log m) entries of B

• We can modify Algorithm I so 
that it only computes B[j] when 
needed !

• Total time ?

…only O(n log m) !

– Need O(log m) entries B[j]

– Each computed in O(n) time
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Algorithm II

• Pick middle column ( j=m/2 )

• Find global maximum a=A[i,m/2] in that column

(and quit if m=1)

• Compare a to b=A[i,m/2-1] and c=A[i,m/2+1]

• If b>a 

then recurse on left columns

• Else, if c>a

then recurse on right columns

• Else a is a 2D peak!

ab c



Algorithm II: Example
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• Pick middle column ( j=m/2 )

• Find global maximum a=A[i,m/2] in that column

(and quit if m=1)

• Compare a to b=A[i,m/2-1] and c=A[i,m/2+1]

• If b>a 

then recurse on left columns

• Else, if c>a

then recurse on right columns

• Else a is a 2D peak!



Algorithm II: Correctness

• Claim: If b>a, then there is a peak among the 
left columns

• Proof (by contradiction):

– Assume no peak on the left

– Then b must have a neighbor b1 with 
higher value

– And b1 must have a neighbor b2 with 
higher value

– …

– We have to stay on the left side – why?

– (because we cannot enter the middle 
column)

– But at some point, we would run out the 
elements of the left columns 

– Hence, we have to find a peak at some 
point
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Algorithm II: Complexity

• We have

T(n,m)= T(n,m/2) + (n)

• Hence:

• T(n,n)= (n) + (n) +…+ (n)

Recursion

Scanning middle column

log2 m

= (nlog m)



Faster than O(n log n) ?

• Idea:

• Pictorially:

read only O(n +m) elements

Reading only O(n + m) elements, reduce an array of

candidates to an array of                        candidates



Faster than O(n log n) ?

• Hypothetical algorithm has recursion:

• Hence:

!



Towards a linear-time algorithm

What elements are useful to check?

- suppose we find global 

max on the cross



Towards a linear-time algorithm

What elements are useful to check?

- suppose we find global 

max on the cross

- if middle element done!



Towards a linear-time algorithm

What elements are useful to check?

- find global max on the 

cross

- if middle element done!

- o.w. two candidate sub-

squares

- determine which one to 

pick by looking at its 

neighbors not on the cross 

(as in Algorithm II)

?

?

Claim: The sub-square chosen by the above procedure (if any), always 

contains a peak of the large square.

BUT: Claim 2: Not every peak of the chosen sub-square is necessarily 

a peak of the large square. Hence, it is hard to recurse…

proof of claim 2 

and fix to this 

algorithm 

provided in 

recitation



First Problem Set

• out tonight, by 9pm

– part A: theory, due at 11.59pm, Sept 21st

– part B: implementation, due at 11.59pm, Sept 23rd

• deadline policy:

– 6 days of credit can be used for delayed homework 
submission

– at most 2 days can be used for the same deadline 
(total of 12 deadlines: 6psets x 2parts)

• details on the class website


