6.006- Introduction to
Algorithms

ecture 2
Prof. Constantinos Daskalakis



Menu

* Problem: peak finding o
—1 dimension &
— 2 dimensions

» detalls about the 1% pset in the end of the lecture



Peak Finding: 1D

« Consider anarray A[1...n]:

10113 5 |1 8|3 |2 |1

* Anelement A[i] Is a peak if it is not smaller than
Its neighbor(s). l.e.,

—1fi1#1,n: Ali[=A[1-1] and A[i1]=A[i+1]
—Ifi=1: A[1]>A[2]
— Ifi=n: A[n] > A[n-1]

* Problem: find any peak.



Peak Finding: lIdeas ?

 Algorithm I:
— Scan the array from left to right
— Compare each A[i] with its neighbors
— Exit when found a peak
« Complexity:
— Might need to scan all elements, so T(n)=0(n)



Peak Finding: Ideas Il ?
N\ N

 Algorithm II:

 Consider the middle element of the array
and compare with neighbors

— If A[n/2-1]>A[n/2]
then search for a peak among A[1]... A[n/2-1]
— Else, if A[n/2]<A[n/2+1]
then search for a peak among A[n/2]... A[n]
— Else A[n/2] is a peak!
(since A[n/2-1]<A[n/2] and A[n/2] >A[n/2+1])
* Running time ?



Algorithm 1. Complexity



Algorithm 1. Complexity

Time needed to find

eak in array of length n
P Y J Time for comparing

\We have / Recursion  Aln/2] with neighbors

/

T(n) =T(n/2) + ©(1)

Unraveling the recursion,
T(n)= (\9(1) + O(1) +...+ @(lj) = ®(log n)

I(%an

* log n 1s much much better thann !




Divide and Conguer

 Very powerful design tool:
— Divide input into multiple disjoint parts

— Conqguer each of the parts separately
(using recursive call)

 Occasionally, we need to combine results
from different calls (not used here)




Peak Finding: 2D

» Considera2D array A[l...n, 1...m] :

10| 8 | 5
312 |1
7113 | 4
6| 8|3

* Anelement A[i] is a 2D peak if it is not smaller than its (at
most 4) neighbors.

* Problem: find any 2D peak.



2D Peak Finding: ldeas?



Algorithm I: use the 1D algorithm

 Algorithm I:

— For each column |, find its global maximum B(j]

— Apply 1D peak finder to find a peak (say BJj]) S 5

of B[l...m] 11 3 6

* Running time ?

...is ®(n-m) 1019172
» Correctness: 3|4 |1

— BJj] not smaller than BJj-1], B[j+1]

— Forany k, B[k] not smaller than any element 9 6

from the k-th column of A

— Therefore, B[j] not smaller than any element
from the columns j-1, j and j+1 of A

— But this includes all neighbors of BJ[j] in A, so
B[j] isapeak in A



Algorithm I’: use the 1D algorithm

» Observation: 1D peak finder uses

only O(log m) entries of B 121 8 | S
« We can modify Algorithm | so 11| 3 | 6
that it only computes B[j] when 10 9 | 2
needed !
» Total time ? 8|41
...only O(n log m) | 121 9 | 6

— Need O(log m) entries BJj]
— Each computed in O(n) time



Algorithm |1

Pick middle column (j=m/2)

Find global maximum a=A[i,m/2] in that column
(and quit if m=1)

Compare a to b=A[i,m/2-1] and c=A[l,m/2+1]

If b>a

then recurse on left columns

Else, if c>a

then recurse on right columns

Else a is a 2D peak!




Algorithm I1: Example

Pick middle column (j=m/2)

Find global maximum a=A[i,m/2] in that column

(and quit if m=1)
Compare a to b=A[i,m/2-1] and c=A[I,m/2+1]

If b>a

then recurse on left columns
Else, if c>a

then recurse on right columns
Else a is a 2D peak!




Algorithm Il: Correctness

« Claim: If b>a, then there is a peak among the
left columns

 Proof (by contradiction):
— Assume no peak on the left

— Then b must have a neighbor bl with
higher value

— And b1 must have a neighbor b2 with
higher value

— We have to stay on the left side — why?

— (because we cannot enter the middle
column)

— But at some point, we would run out the
elements of the left columns

— Hence, we have to find a peak at some
point

| N O | O




Algorithm 1. Complexity

Recursion

. We have /
T(n,m)=T(n,m/2) + ®(n)

Scanning middle column
* Hence:

e T(n,n)=0(n) +O(N)+...+ O(N) =B(nlog m)
N J

Io%




Faster than O(n log n) ?

e |dea:

Reading only O(n + m) elements, reduce an array of
n x m candidates to an array of n/2 x m /2 candidates

* Pictorially:
[ O
O
" g /\/
- O

read only O(n +m) elements



Faster than O(n log n) ?

» Hypothetical algorithm has recursion:

T(n,m)="T (g g) + O(n + m)

* Hence: T(n,m)=0(mn-+m)+ 06 (n i m)

2

L6 (n + -m)
4

+ ...+ 0(1)

=On+m) |



Towards a linear-time algorithm

What elements are useful to check?

- suppose we find global
max on the cross




Towards a linear-time algorithm

What elements are useful to check?

- suppose we find global
max on the cross

- 1If middle element done!




Towards a linear-time algorithm

What elements are useful to check?

- find global max on the
proof of claim 2 ) Cross
and fix to this ' - if middle element done!
algorithm

provided in - 0.w. two candidate sub-
recitation squares

- determine which one to
? pick by looking at its
neighbors not on the cross
(as in Algorithm 1)
Claim: The sub-square chosen by the above procedure (if any), always
contains a peak of the large square.

BUT: Claim 2: Not every peak of the chosen sub-square is necessarily
a peak of the large square. Hence, it is hard to recurse...




First Problem Set

* out tonight, by 9pm

—part A: theory, due at 11.59pm, Sept 21st

—part B: implementation, due at 11.59pm, Sept 23"
» deadline policy:

— 6 days of credit can be used for delayed homewor!|
submission

—at most 2 days can be used for the same deadline
(total of 12 deadlines: 6psets x 2parts)

 detalls on the class website



