
6.006- Introduction to
Algorithms

Lecture 2
Prof. Constantinos Daskalakis

Menu

• Problem: peak finding

– 1 dimension

– 2 dimensions

• Technique: Divide and conquer

• details about the 1st pset in the end of the lecture

Peak Finding: 1D

• Consider an array A[1…n] :

• An element A[i] is a peak if it is not smaller than
its neighbor(s). I.e.,

– if i ≠ 1, n : A[i]≥A[i-1] and A[i]≥A[i+1]

– If i=1 : A[1] ≥ A[2]

– If i=n : A[n] ≥ A[n-1]

• Problem: find any peak.

10 13 5 8 3 2 1

Peak Finding: Ideas ?

• Algorithm I:

– Scan the array from left to right

– Compare each A[i] with its neighbors

– Exit when found a peak

• Complexity:

– Might need to scan all elements, so T(n)=(n)

Peak Finding: Ideas II ?

• Algorithm II:

• Consider the middle element of the array
and compare with neighbors

– If A[n/2-1]>A[n/2]

then search for a peak among A[1]… A[n/2-1]

– Else, if A[n/2]<A[n/2+1]

then search for a peak among A[n/2]… A[n]

– Else A[n/2] is a peak!

(since A[n/2-1]≤A[n/2] and A[n/2] ≥A[n/2+1])

• Running time ?

Algorithm II: Complexity

Algorithm II: Complexity

• We have

• Unraveling the recursion,

T(n)= (1) + (1) +…+ (1) = (log n)

• log n is much much better than n !

Recursion

Time for comparing

A[n/2] with neighbors

log2 n

T(n) = T(n/2) + (1)

Time needed to find

peak in array of length n

Divide and Conquer

• Very powerful design tool:

– Divide input into multiple disjoint parts

– Conquer each of the parts separately
(using recursive call)

• Occasionally, we need to combine results
from different calls (not used here)

• Consider a 2D array A[1…n, 1…m] :

• An element A[i] is a 2D peak if it is not smaller than its (at
most 4) neighbors.

• Problem: find any 2D peak.

Peak Finding: 2D

10 8 5

3 2 1

7 13

6 8

4

3

2D Peak Finding: Ideas?

Algorithm I: use the 1D algorithm

• Algorithm I:

– For each column j, find its global maximum B[j]

– Apply 1D peak finder to find a peak (say B[j])
of B[1...m]

• Running time ?

…is (nm)

• Correctness:

– B[j] not smaller than B[j-1], B[j+1]

– For any k, B[k] not smaller than any element
from the k-th column of A

– Therefore, B[j] not smaller than any element
from the columns j-1, j and j+1 of A

– But this includes all neighbors of B[j] in A, so
B[j] is a peak in A

12 8 5

11 3

10 9

6

2

8 4 1

12 9 6

Algorithm I’: use the 1D algorithm

• Observation: 1D peak finder uses
only O(log m) entries of B

• We can modify Algorithm I so
that it only computes B[j] when
needed !

• Total time ?

…only O(n log m) !

– Need O(log m) entries B[j]

– Each computed in O(n) time

12 8 5

11 3

10 9

6

2

8 4 1

12 9 6

Algorithm II

• Pick middle column (j=m/2)

• Find global maximum a=A[i,m/2] in that column

(and quit if m=1)

• Compare a to b=A[i,m/2-1] and c=A[i,m/2+1]

• If b>a

then recurse on left columns

• Else, if c>a

then recurse on right columns

• Else a is a 2D peak!

ab c

Algorithm II: Example

12 8 5

11 3

10 9

6

2

8 4 1

9

12

a cb

• Pick middle column (j=m/2)

• Find global maximum a=A[i,m/2] in that column

(and quit if m=1)

• Compare a to b=A[i,m/2-1] and c=A[i,m/2+1]

• If b>a

then recurse on left columns

• Else, if c>a

then recurse on right columns

• Else a is a 2D peak!

Algorithm II: Correctness

• Claim: If b>a, then there is a peak among the
left columns

• Proof (by contradiction):

– Assume no peak on the left

– Then b must have a neighbor b1 with
higher value

– And b1 must have a neighbor b2 with
higher value

– …

– We have to stay on the left side – why?

– (because we cannot enter the middle
column)

– But at some point, we would run out the
elements of the left columns

– Hence, we have to find a peak at some
point

12 8 5

11 3

10 9

6

2

8 4 1

9 ab

b1

b2

Algorithm II: Complexity

• We have

T(n,m)= T(n,m/2) + (n)

• Hence:

• T(n,n)= (n) + (n) +…+ (n)

Recursion

Scanning middle column

log2 m

= (nlog m)

Faster than O(n log n) ?

• Idea:

• Pictorially:

read only O(n +m) elements

Reading only O(n + m) elements, reduce an array of

candidates to an array of candidates

Faster than O(n log n) ?

• Hypothetical algorithm has recursion:

• Hence:

!

Towards a linear-time algorithm

What elements are useful to check?

- suppose we find global

max on the cross

Towards a linear-time algorithm

What elements are useful to check?

- suppose we find global

max on the cross

- if middle element done!

Towards a linear-time algorithm

What elements are useful to check?

- find global max on the

cross

- if middle element done!

- o.w. two candidate sub-

squares

- determine which one to

pick by looking at its

neighbors not on the cross

(as in Algorithm II)

?

?

Claim: The sub-square chosen by the above procedure (if any), always

contains a peak of the large square.

BUT: Claim 2: Not every peak of the chosen sub-square is necessarily

a peak of the large square. Hence, it is hard to recurse…

proof of claim 2

and fix to this

algorithm

provided in

recitation

First Problem Set

• out tonight, by 9pm

– part A: theory, due at 11.59pm, Sept 21st

– part B: implementation, due at 11.59pm, Sept 23rd

• deadline policy:

– 6 days of credit can be used for delayed homework
submission

– at most 2 days can be used for the same deadline
(total of 12 deadlines: 6psets x 2parts)

• details on the class website

