

6.006 - Introduction to Algorithms

Lecture 17:
Heuristics for Faster Graph Search

Linear time is too slow...
● Google Maps: ~1010 locations, 1011 edges

● Dijkstra's would take Θ(1 minute)

Today's goals

● Develop heuristics for shortest path searches

– Preserve correctness

– Improve runtime in practice, not in theory

● Consider special classes of graphs:

– Random graphs

– Planar-weighted graphs

Part 1: “random” graphs
● Every vertex has d random neighbors
● Consider the neighborhood of a vertex s

– Number of vertices at distance 1: d

– Number at distance 2: ~d2

– ...number at distance k: ~dk

BFS in random graphs

● G is a random graph (n vertices, degree d)

● Suppose we search for a path from s to t in G

– Almost all vertices are at levels ~log
d
 n

– Almost all time spent at the last levels

● How can we improve our runtime?

Bidirectional BFS

● Idea: instead of running a BFS from s to t, run
BFS from s to t and from t to s simultaneously

– For each level i:
● Compute vertices at distance i from s
● Compute vertices at distance i from t

– Stop when a vertex v has been found from
both s and t

– Shortest path from s to t runs through v

Example of bidirectional BFS

Proof of correctness

● If shortest path from s to t is of length 2k, then
middle vertex v

k
 appears in both level ks

● If shortest path is of length 2k+1, then vertex
v

k+1
 appears in s-level k+1 and t-level k

● Is this too easy?

“Analysis” on random graphs

● Bidirectional BFS expands (log
d
 n) / 2 levels,

instead of log
d
 n

– Explores about √n vertices

– Graph search in sublinear time!

● Performs well on many non-random graphs

Bidirectional Dijkstra

● Run Dijkstra simultaneously forwards from s
and backwards to t

● Keep vertices in two min-heaps:

– First sorted by distance from s

– Second sorted by distance to t

● Pop the smaller of the two minimums

– From s heap: add it to a set S

– From t heap: add it to T

● Repeat till we add a vertex v to both sets

Subtleties in bidirectional Dijkstra

● The shortest path from s to t does not
necessarily run through the vertex v...

– It goes from something in S to something in T

● Loop over every edge from a vertex x in S to a
vertex y in T

– Find paths with lengths d(s, x) + l(x, y) + d(y, t)

– If any of these paths is shorter than the path
through v (d(s, v) + d(v, t)), return it instead

Part 2: planar-weighted graphs
● In a planar-weighted graph, vertices are points
● Edge length l(u, v) is the distance from u to v

● We've seen this before:

Dijkstra on planar-weighted graphs

● In reality: ● In an ideal world:

Goal-directed search: A*

● Idea: use extra information to guide search
from s to t

● Assign each vertex v a potential λ(v)

– t should have potential λ(t) = 0

– Vertices close to t should have low potential

● Try to search toward low potential

– Modify edge costs: l'(u, v) = l(u, v) - λ(u) + λ(v)

– Run Dijkstra?

Edge modification preserves paths

● New edge costs: l'(u, v) = l(u, v) - λ(u) + λ(v)

● Claim: the shortest path from u to v is
preserved by edge modification

– Let (u, v
1
, v

2
, … v

k
, v) be a path from u to v

– New path length:
 l'(u, v

1
) + l'(v

1
, v

2
) + … + l'(v

k
, v)

= l(u, v
1
) - λ(u) + λ(v

1
) + l(v

1
, v

2
) - λ(v

1
) + λ(v

2
) + … + l(v

k
, v) - λ(v

k
) + λ(v)

= [l(u, v
1
) + l(v

1
, v

2
) + … + l(v

k
, v)] – λ(u) + λ(v)

● New path length = old path length – λ(u) + λ(v)

Consistent heuristics

● Edge modification preserves paths

● We can use Dijkstra if l'(u, v) ≥ 0 for all u, v

– As long as l(u, v) - λ(u) + λ(v) ≥ 0

● How to choose λ(u)?

– Suppose graph is planar-weighted

– Use distance to t as potential: λ(u) = d(u, t)

– Triangle inequality: l(u, v) + d(v, t) ≥ d(u, t)

● Other graphs – other potentials

Results of A*

A* has been called one of the top ten
algorithms of the last century!

Other ideas to speed up search...

● Precompute shortest paths for some pairs...

● “Incremental”: use data from prior searches...
● Only return approximate shortest paths...

● …

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

