6.006- Introduction to Algorithms

Lecture 26
How Flipping Coins Helps Computation

Prof. Constantinos Daskalakis

Coin Flips in Algorithms

Last time we gave an algorithm SIL VIO for primality testing

Input: Number z (represented by O(log n) bits)

Desired Behavior: “PRIME” if n 1s prime, “COMPOSITE” o.w.
SILVIO run 1n time poly(log n), 1.e. polynomial in the representation of n.

SILVIO flipped coins (namely somewhere 1n its execution 1t chose a random
element in Z7)

SILVIO’S Behavior:
— Pr[A(n)="PRIME”]=1, 1f n 1s prime
— Pr[A(n)="PRIME”]<1/2, if n is composite

By repetition can boost the probability of outputting a correct answer as
much as we want.

Can SILVIO be derandomized? Unknown as of yet

There is a primality testing algorithm that is deterministic.

It was discovered many years later and 1s more complicated.

Moral: Flipping coins enables simpler, and (potentially) faster computation.

Menu

* Minimum-cut
* Random walks 1n graphs

— Pagerank

Menu

* Minimum-cut
* Random walks 1n graphs

— Pagerank

MIN-CUT

Input: Undirected connected graph G=(V,E).
Output: Partition V into L. and R minimizing the edges between L and R.
1.e. find the bottleneck of a graph.

Any edge is a min-cut
Best deterministic algorithm: O([V] |E| log [V|¥/|E)).
Fastest and simplest known algorithm: randomized; time O(|V|* log|V|)
Obtained by David Karger in 1993.

Intuition: Minimum cut is (hopefully) a small set of edges.

SO 1f I pick a random edge, chances are that it’s not part of the minimum
cut.

Karger’s Algorithm

» Example execution:

* Pseudocode:

/While more than two nodes remain:\
- pick random edge e = (u, v);

- merge u and v.
(called a contraction)

\Output surviving edges.)

Karger’s Algorithm

e Good execution:

 Bad execution:

Claim: Pr[good execution] >2/n?2 = ~ n® repetitions suffice!

Karger’s Algorithm

* Lower-bounding the probability of good execution.

e Graph may have many min-cuts (remember tree example).

* Let’s fix one of them C.

« Call G=G, Gy, G,,...,G, , the graphs created by Karger’s algorithm.

G, G,

* Want to find probability that G, , only contains edges of C.
* Pr[success] = Pr[none of chosen edges belongs to (]

= Pr[e & C] - Pr[e, & C |)& C] -...-Pr[e, & C | eg,....e,4& C]

Karger’s Algorithm

Let’s fix a min-cut C.
Call G=G, G,, G,,...,G, , the graphs created by Karger’s algorithm.

o

Want to find probability that G, , only contains edges of C.

if the min-cut of a graph
has size |C| then every
vertex has degree >|(]

Pr[success] = Pr[none of chosen edges beloxgs to C]

= Pr[e & C] - Pr[e, € C | e, & C] - Pgen ECley,....e, & C]
Warm-up: Pr[e & C]?
9 2

Bl-lc| _, |c|°
leo £ 01 =g B wieE T v

Karger’s Algorithm

Let’s fix a min-cut C
Call G=G, Gy, G,,...,G,, the graphs created by Karger’s algorithm.

a
- p

Want to ﬁnd probability that G, , only contams edges of C.
Pr[success] = Pre & C] -...-Pr[e, & C | eg,...,e, 4& C]
Warm-up: Pr[e,& C] > 1-2/|V]

Prleft C | e,,...,e, & C] ?

Claim: If ¢,...,e, & C, then the minimum cut of G, has size |C|.
Proof: All edges in C have survived. So min-cut at most size |C]|.

If there 1s a smaller cut in G,, then that cut exists also in G,,.
QED

Karger’s Algorithm

Let’s fix a min-cut C.
Call G=G, Gy, G,,...,G,, the graphs created by Karger’s algorithm.

(&) (&)
FOR R

Want to ﬁnd probability that G, , only contams edges of C.
Pr[success] = Pre & C] -...-Pr[e, & C | eg,...,e, 4& C]
Warm-up: Pr[e,& C] > 1-2/|V]

Prleft C | e,,...,e, & C] ?

Claim: If e,...,e, & C, then the minimum cut of G, has size |C]|.

So:
Prle; ¢ Cleg ¢ C,...,e; 1 ¢ Cl>1— —

Karger’s Algorithm

Let’s fix a min-cut C.
Call G=G, Gy, G,,...,G,, the graphs created by Karger’s algorithm.

(») (&)
FORE R

Want to ﬁnd probability that G, , only contams edges of C.
Pr[success] = Pre & C] -...-Pr[e, & C | eg,...,e, 4& C]
Warm-up: Pr[e,& C] > 1-2/|V]

Prleft C | e,,...,e, & C] ?

Claim: If e,...,e, & C, then the minimum cut of G, has size |C]|.

So:
Pr[€i§§0|60%0,...,61'_1%0]21—

V] =i

Karger’s Algorithm

Let’s fix a min-cut C.
Call G=G, G,, G2, G, , the graphs created by Karger s algorlthm

(») 0
G, 0 G,

Want to find probability that G, , only contams edges of C.
Pr[success] = Pre & C] -...-Pr[e, & C | eg,...,e, 4& C]

So: 2 V]|—i—2
. . >1— —
Prle;, ¢ C e ¢ C,....e,.1 ¢ C] > 1 V= V=

Hence:

vi—2 V=3 [Vi=4 [VI=5 = 4.3 2.1
Prlsuccess| > VI V=1 V=2 [V]=3 """ "6 5 4 3

= W >2/m? =P repeat algorithm ~n? times and

choose best cut

Menu

* Minimum-cut
 Random walks in graphs
— Pagerank

Random Walks

Given undirected graph G = (V, E)

A squirrel stands at vertex v, :

vy
Squirrel ate fermented pumpkin so doesn’t know what he’s doinzg

So jumps to random neighbor v, of v,

Then jumps to random neighbor v, of v,

etc

Question: Where 1s squirrel after ¢ steps?

A: At some random location.

OK, with what probability 1s squirrel at each vertex of the graph?
Want to compute x, € R”, where

x(7) : probability squirrel is at node 7 at time .

2
s e
xt xt + 1 ° 1 3
Simplification: all nodes have same degree d. 4
x,=(1,0,0,0,0)
Xg—>x;?

if u,, u,,..., u, are the d neighbors of v,, then
v,=u, with probability 1/d

x,=xy A4
sox,;=(0,%,0,0, %)

- — 2
X,=x1 A =x5A4

0 % 0 0 %) N
1 1 X— Xo
2 0 ¥ 0 0

A=10 % 0 % 0 | (adjacency matrix divided by d)
0 0 % 0 %

K%OO%O/

A,; =probability of jumping to j if squirrel 1s at i

Xy

More general undirected graphs?

A =adjacency matrix where row i 1s divided by the degree d; of i
x,= x5 A

Computing x, ?

Silvio will be disappointed if you don’t use...

repeated squaring!

Compute 4 — A> — A*— ...— A (if t is a power of 2; if not ...)
then do vector-matrix product 2

How about limiting distribution x,as t—o ? 1 3
¢.g. what 1s x_, 1n 5-cycle?

x,= (%, ¥, ¥, ¥, 1) 4

Verlfylngx —> (1/5, Vs, Vs,

Recall

0.5000

0.3750
0.0625
0.3125
0.1094
0.2734
0.1406
0.2480
0.1611
0.2314
0.1746
0.2206
0.1833

72 0
0
72 0
0
0 0
0

0.2500
0.1250
0.2500
0.1562
0.2344
0.1719
0.2227
0.1816
0.2148
0.1880
0.2097
0.1921
0.2064

0 12
0 0
72 0
0

0
0.5000]
0]
0.3750]
0.0625]
0.3125]
0.1094]
0.2734]
0.1406]
0.2480]
0.1611]
0.2314]
0.1746]
0.2206]
0.1833]

1/20/
]

| S e A s T e N s B e N s BN e B s B e BN |

=[0.1833
0.2135
=10.1891
=10.2088
0.1929
=10.2058
0.1953
=10.2038
=10.1969
0.2025
0.1980

0.2135
0.1891
0.2088
0.1929
0.2058
0.1953
0.2038
0.1969
0.2025
0.1980
0.2016

%, %)

0.1949
0.2042
0.1966
0.2027
0.1978
0.2018
0.1986
0.2012
0.1991
0.2008
0.1994

— !
x,= Xy A

0.1949
0.2042
0.1966
0.2027
0.1978
0.2018
0.1986
0.2012
0.1991
0.2008
0.1994

0.2135
0.1891
0.2088
0.1929
0.2058
0.1953
0.2038
0.1969
0.2025
0.1980
0.2016

e e e e e e] e] e e

Proving x,— (15, V5, 15, 1/-;, 5)?

Recall

Random idea: what are the eigenvalues of 4 ?

/O » 0 0 12\
» 0 % 0 0
0 % 0 % 0
0 0 %2 0 %

K%OO%O/

A symmetric so 5 real eigenvalues
4, =1.0000, 4,=1;=0.3090, 4, = A;=-0.8090 (thanks Matlab)
coincidence: 4, = 4; and 1, = 45 (5-cylce 1s a special graph)

non-coincidence (holds for any undirected graph®):

— largest eigenvalue =1

— all others have absolute value <1

left eigenvector corresponding to 4, = 1.0000?
e,.= (5, 15, ¥5, U5, V5) is a left eigenvector for 4,

Wow. Why would x, — ¢, as —>?

1 3

Proving x, —

Recall

A, =1.0000, 1, =1,=0.3090, 1, = As=-0.8090

f()lzo

7“0 A
0 » 0
0 0 7"

K%OO

e = (%5, ¥, 15, V5, 1%)

Proof: choose e,, e;, e,, e; so that eigenvectors form a basis

1
2

0 0
72 0
0

1/20_/

(5, V5, V5, ¥5, ¥5)?

1 3

(guaranteed by the spectral theorem since A is symmetric)

SO X,=a, e; + a, e, + aye;+ a, e, +as es, for some ay, a,, a5, a,, as

Now x=x, 4" =
=a,e,A'ta,e, Al+ase;A'taye, Al+as es Al

— t t t t t
a,e M tay,e, b tayes A +ta,e A+ asesds

—> q,€e,as [—>X

since e,;= (Y5, 5, V5, 5, ¥5) is a distribution, it must be that a,=1
Hence x,— (5, 15, V5, 15, 15), as t—

More General Theorem

Given directed graph G

Take A = adjacency matrix where row i is divided by the out-degree d; of i

(Under mild conditions™) 4 has eigenvalue 1 with multiplicity 1 and all other
eigenvalues will have absolute value <1

Moreover, if e, be the (unique) left eigenvector corresponding to eigenvalue 1,

then e, will have all components positive.

Normalize 1t so that it 1s a distribution.

Theorem: A random walk on G started anywhere will converge to distribution e,!
e, 1s called the “stationary distribution of G”

(Fundamental Theorem of Markov Chains)
Two obvious Questions:

— why is x,, interesting?

— how fast does x,—x_, ?

Menu

* Minimum-cut
* Random walks 1n graphs
— Pagerank

Pagerank

No better proof that something is useful than having interesting applications ©
It turns out that random walks have a famous one: PageRank.

PageRank of a webpage p =" Probability that a web-surfer starting from some
central page (e.g. Yahoo!) and following random weblinks arrives at webpage p
in infinite steps.

How compute this probability?
Form graph G = the hyperlink graph;

Namely, G has a node for every webpage, and there is an edge from webpage p,
to webpage p, iff there 1s a hyperlink from p, to p,.

Compute stationary distribution of G, i.e. the left eigenvector of the (normalized
by out-degrees) adjacency matrix 4 of G, corresponding to eigenvalue 1.

How compute stationary distribution?
Idea 1: Crawl the web, create giant 4, solve eigenvalue problem.
Runtime O(#?) using Gaussian elimination

too much for n = size of the web

Pagerank

Graph G = the hyperlink graph

Compute stationary distribution of G, i.e. the left eigenvector of the (normalized by
out-degrees) adjacency matrix 4 of G, corresponding to eigenvalue 1.

How compute stationary distribution?

Different (better?) 1dea:

Forget linear algebra;

Start at some central page and do random walk for a few steps (how many?);
Restart and repeat (how many times?);

then take PageRank(p) = empirical probability that random walk ended at p.

If web-graph 1s well-connected™®, hope that empirical distribution should be good
approximation to stationary distribution for the right choice of “how many” above...

or at least for the top components of the eigenvector, which are the most important
for ranking the top results.

*caveat: In reality, Pagerank corresponds to the stationary distribution of a random
surfer who does the following at every step: with probability 15% jumps to a
random page (called a restart), &with probability 85% jumps to a random neighbor.

Same theory applies.

Menu

* Minimum-cut
* Random walks 1n graphs
— Pagerank

— How fast does x,—x, ?

“Mixing Time”

Captures the speed at which x,—x_,

Speed depends on connectivity of G.

Sometimes G 1s given to us and we can’t change it.
But sometimes we design G .

e.g. in card shuffling

type of shuffle defines connectivity of the graph between
deck configurations...

Card Shuftling Graph

e

/
—> 7 :reachable via a particular move defined by shuffle

(19

while performing the shuffle we jump from node to node of this graph
stationary distribution of a correct shuffle?

probability 1/52! on each permutation

Effect of Shuffle to Mixing Time

Different shuffles have different mixing times. Examples:
- Top-in-at-Random: take top card and stick it to random location

Number of repetitions to be close to uniform permutation?

~300 repetitions

- Riffle Shuffle:

Number of repetitions? ~10

So different shuffles have different graphs with different mixing times.

Summary

Randomness 1s useful
As are the other techniques we saw 1n this class
When facing an algorithmic problem:
 understand it
* try brute force first
* then try to improve it using:
* a cool data structure such as an AVL tree/heap/hash table
* a cool algorithmic technique such as Divide and Conquer, or DP
* map it to a graph problem and use off the shelf algorithm such
as BFS/DFS/Dijkstra/Bellman-Form/Topological Sort
 or modify these algorithms
* If everything else fails, maybe NP-hard? Try to reduce an NP-hard
problem to your problem.
* Look at a catalog of NP-hard problems, find a similar problem to
your problem and try to reduce that problem to your problem.
* Great hanging out every Tuesday and Thursday
 Evaluate class:

