
6.006-­‐	
 Introduc)on	
 to	
 Algorithms	

Prof.	
 Constan/nos	
 Daskalakis	

Lecture	
 26	

How	
 Flipping	
 Coins	
 Helps	
 Computa/on	

Coin Flips in Algorithms
•  Last time we gave an algorithm SILVIO for primality testing
•  Input: Number n (represented by O(log n) bits)
•  Desired Behavior: “PRIME” if n is prime, “COMPOSITE” o.w.
•  SILVIO run in time poly(log n), i.e. polynomial in the representation of n.
•  SILVIO flipped coins (namely somewhere in its execution it chose a random

element in Zn
*)

•  SILVIO’S Behavior:
–  Pr[A(n)=“PRIME”]=1, if n is prime
–  Pr[A(n)=“PRIME”]≤1/2, if n is composite

•  By repetition can boost the probability of outputting a correct answer as
much as we want.

•  Can SILVIO be derandomized?
•  There is a primality testing algorithm that is deterministic.
•  It was discovered many years later and is more complicated.
•  Moral: Flipping coins enables simpler, and (potentially) faster computation.

Unknown as of yet

Menu

•  Minimum-cut
•  Random walks in graphs

– Pagerank

Menu

•  Minimum-cut
•  Random walks in graphs

– Pagerank

MIN-CUT
•  Input: Undirected connected graph G=(V,E).
•  Output: Partition V into L and R minimizing the edges between L and R.
•  i.e. find the bottleneck of a graph.
•  E.g.

•  Best deterministic algorithm: O(|V| |E| log |V|2/|E|).
•  Fastest and simplest known algorithm: randomized; time O(|V|2 log|V|)
•  Obtained by David Karger in 1993.
•  Intuition: Minimum cut is (hopefully) a small set of edges.
•  SO if I pick a random edge, chances are that it’s not part of the minimum

cut.

Any edge is a min-cut

Karger’s Algorithm
•  Example execution:

•  Pseudocode:

While more than two nodes remain:
- pick random edge e = (u, v);
-  merge u and v.
 (called a contraction)

Output surviving edges.

Karger’s Algorithm
•  Good execution:

•  Bad execution:

A B

E

D

C

A B

E

C,D	

E

C,D	

A,B	

E A,B	

C,D	

oops!

Claim: Pr[good execution] ≥ 2/n2

not a min-cut

è ~ n2 repetitions suffice!

Karger’s Algorithm
•  Lower-bounding the probability of good execution.
•  Graph may have many min-cuts (remember tree example).
•  Let’s fix one of them C.
•  Call G0=G, G1, G2,…,Gn-2 the graphs created by Karger’s algorithm.

•  Want to find probability that Gn-2 only contains edges of C.
•  Pr[success] = Pr[none of chosen edges belongs to C]

 = Pr[e0∉ C] ⋅ Pr[e1∉ C | e0∉ C] ⋅…⋅Pr[en-3∉ C | e0,…,en-4∉ C]

G0 G1 G2 G3

e0

e1
e2

Karger’s Algorithm
•  Let’s fix a min-cut C.
•  Call G0=G, G1, G2,…,Gn-2 the graphs created by Karger’s algorithm.

•  Want to find probability that Gn-2 only contains edges of C.
•  Pr[success] = Pr[none of chosen edges belongs to C]

 = Pr[e0∉ C] ⋅ Pr[e1∉ C | e0∉ C] ⋅…⋅Pr[en-3∉ C | e0,…,en-4∉ C]
•  Warm-up: Pr[e0∉ C]?

G0 G1 G2 G3

e0

e1
e2

Pr[e0 /∈ C] =
|E|− |C|

|E| = 1− |C|
|E|≥ 1− |C|

|V ||C|/2
= 1− 2

|V |

if the min-cut of a graph
has size |C| then every
vertex has degree ≥|C|

Karger’s Algorithm
•  Let’s fix a min-cut C.
•  Call G0=G, G1, G2,…,Gn-2 the graphs created by Karger’s algorithm.

•  Want to find probability that Gn-2 only contains edges of C.
•  Pr[success] = Pr[e0∉ C] ⋅…⋅Pr[en-3∉ C | e0,…,en-4∉ C]
•  Warm-up: Pr[e0∉ C] ≥ 1-2/|V|
•  Pr[ei∉ C | e0,…,ei-1∉ C] ?
•  Claim: If e0,…,ei-1∉ C, then the minimum cut of Gi has size |C|.
•  Proof: All edges in C have survived. So min-cut at most size |C|.
•  If there is a smaller cut in Gi, then that cut exists also in G0.
•  QED

G0 G1 G2 G3

e0

e1
e2

Karger’s Algorithm
•  Let’s fix a min-cut C.
•  Call G0=G, G1, G2,…,Gn-2 the graphs created by Karger’s algorithm.

•  Want to find probability that Gn-2 only contains edges of C.
•  Pr[success] = Pr[e0∉ C] ⋅…⋅Pr[en-3∉ C | e0,…,en-4∉ C]
•  Warm-up: Pr[e0∉ C] ≥ 1-2/|V|
•  Pr[ei∉ C | e0,…,ei-1∉ C] ?
•  Claim: If e0,…,ei-1∉ C, then the minimum cut of Gi has size |C|.
•  So:

G0 G1 G2 G3

e0

e1
e2

Pr[ei /∈ C | e0 /∈ C, . . . , ei−1 /∈ C] ≥ 1− 2

??

Pr[ei /∈ C | e0 /∈ C, . . . , ei−1 /∈ C] ≥ 1− 2

|V |− i

Karger’s Algorithm
•  Let’s fix a min-cut C.
•  Call G0=G, G1, G2,…,Gn-2 the graphs created by Karger’s algorithm.

•  Want to find probability that Gn-2 only contains edges of C.
•  Pr[success] = Pr[e0∉ C] ⋅…⋅Pr[en-3∉ C | e0,…,en-4∉ C]
•  Warm-up: Pr[e0∉ C] ≥ 1-2/|V|
•  Pr[ei∉ C | e0,…,ei-1∉ C] ?
•  Claim: If e0,…,ei-1∉ C, then the minimum cut of Gi has size |C|.
•  So:

G0 G1 G2 G3

e0

e1
e2

Pr[ei /∈ C | e0 /∈ C, . . . , ei−1 /∈ C] ≥ 1− 2

|V |− i

Karger’s Algorithm
•  Let’s fix a min-cut C.
•  Call G0=G, G1, G2,…,Gn-2 the graphs created by Karger’s algorithm.

•  Want to find probability that Gn-2 only contains edges of C.
•  Pr[success] = Pr[e0∉ C] ⋅…⋅Pr[en-3∉ C | e0,…,en-4∉ C]
•  So:

•  Hence:

G0 G1 G2 G3

e0

e1
e2

=
|V |− i− 2

|V |− i

= 2
|V ||V |−1

Pr[success] ≥ |V |−2
|V | · |V |−3

|V |−1 · |V |−4
|V |−2 · |V |−5

|V |−3 · . . . · 4
6 · 3

5 · 2
4 · 1

3

≥ 2/n2 è repeat algorithm ~n2 times and
choose best cut

Menu

•  Minimum-cut
•  Random walks in graphs

– Pagerank

Random Walks
•  Given undirected graph G = (V, E)
•  A squirrel stands at vertex v0 :
•  Squirrel ate fermented pumpkin so doesn’t know what he’s doing
•  So jumps to random neighbor v1 of v0

•  Then jumps to random neighbor v2 of v1
•  etc
•  Question: Where is squirrel after t steps?
•  A: At some random location.
•  OK, with what probability is squirrel at each vertex of the graph?
•  Want to compute xt ∈ Rn, where
•  xt(i) : probability squirrel is at node i at time t.

v0

v1

v2

xt → xt + 1 ?
•  Simplification: all nodes have same degree d.
•  x0 = (1, 0, 0, 0, 0)
•  x0 → x1 ?
•  if u1, u2,…, ud are the d neighbors of v0, then
•  v1=ui with probability 1/d
•  so x1 = (0, ½ , 0, 0, ½)
•  x2 = (½, 0, ¼, ¼,0)
•  …

•  A = (adjacency matrix divided by d)

1
2

3

4
5

½ 0 0 0 ½
0 ½ ½ 0 0
½ 0 0 ½ 0
0 0 ½ 0 ½
0 ½ 0 ½ 0

Aij =probability of jumping to j if squirrel is at i

x1= x0 A
x2= x1 A = x0 A2

x3= x2 A =x0 A3

…

xt= x0 At

xt
•  More general undirected graphs?
•  A =adjacency matrix where row i is divided by the degree di of i
•  xt= x0 At
•  Computing xt ?
•  Silvio will be disappointed if you don’t use…
•  repeated squaring!
•  Compute A → A2 → A4 → …→ At (if t is a power of 2; if not …)
•  then do vector-matrix product
•  How about limiting distribution xt as t→∞ ?
•  e.g. what is x∞ in 5-cycle?
•  x∞= (⅕, ⅕, ⅕, ⅕, ⅕)

1
2

3

4
5

Verifying xt → (⅕, ⅕, ⅕, ⅕, ⅕)
•  Recall

 A =

•  x0 = [1 0 0 0 0]
•  x1 = [0 0.5000 0 0 0.5000]
•  x2 = [0.5000 0 0.2500 0.2500 0]
•  x3 = [0 0.3750 0.1250 0.1250 0.3750]
•  x4 = [0.3750 0.0625 0.2500 0.2500 0.0625]
•  x5 = [0.0625 0.3125 0.1562 0.1562 0.3125]
•  x6 = [0.3125 0.1094 0.2344 0.2344 0.1094]
•  x7 = [0.1094 0.2734 0.1719 0.1719 0.2734]
•  x8 = [0.2734 0.1406 0.2227 0.2227 0.1406]
•  x9 = [0.1406 0.2480 0.1816 0.1816 0.2480]
•  x10 =[0.2480 0.1611 0.2148 0.2148 0.1611]
•  x11 =[0.1611 0.2314 0.1880 0.1880 0.2314]
•  x12 =[0.2314 0.1746 0.2097 0.2097 0.1746]
•  x13 =[0.1746 0.2206 0.1921 0.1921 0.2206]
•  x14 =[0.2206 0.1833 0.2064 0.2064 0.1833]

1
2

3

4
5

½ 0 0 0 ½
0 ½ ½ 0 0
½ 0 0 ½ 0
0 0 ½ 0 ½
0 ½ 0 ½ 0

x15 = [0.1833 0.2135 0.1949 0.1949 0.2135]
x16 = [0.2135 0.1891 0.2042 0.2042 0.1891]
x17 = [0.1891 0.2088 0.1966 0.1966 0.2088]
x18 = [0.2088 0.1929 0.2027 0.2027 0.1929]
x19 = [0.1929 0.2058 0.1978 0.1978 0.2058]
x20 = [0.2058 0.1953 0.2018 0.2018 0.1953]
x21 = [0.1953 0.2038 0.1986 0.1986 0.2038]
x22 = [0.2038 0.1969 0.2012 0.2012 0.1969]
x23 = [0.1969 0.2025 0.1991 0.1991 0.2025]
x24 = [0.2025 0.1980 0.2008 0.2008 0.1980]
x25 = [0.1980 0.2016 0.1994 0.1994 0.2016]

xt= x0 At

Proving xt → (⅕, ⅕, ⅕, ⅕, ⅕) ?
•  Recall

 A =

•  Random idea: what are the eigenvalues of A ?
•  A symmetric so 5 real eigenvalues
•  λ1 = 1.0000, λ2 = λ3 =0.3090, λ4 = λ5 = -0.8090 (thanks Matlab)
•  coincidence: λ2 = λ3 and λ4 = λ5 (5-cylce is a special graph)
•  non-coincidence (holds for any undirected graph*):

–  largest eigenvalue =1
–  all others have absolute value <1

•  left eigenvector corresponding to λ1 = 1.0000?
•  e1= (⅕, ⅕, ⅕, ⅕, ⅕) is a left eigenvector for λ1

•  Wow. Why would xt → e1 as t→∞?

1
2

3

4
5

½ 0 0 0 ½
0 ½ ½ 0 0
½ 0 0 ½ 0
0 0 ½ 0 ½
0 ½ 0 ½ 0

Proving xt → (⅕, ⅕, ⅕, ⅕, ⅕) ?
•  Recall

 A =

•  λ1 = 1.0000, λ2 = λ3 =0.3090, λ4 = λ5 = -0.8090
•  e1= (⅕, ⅕, ⅕, ⅕, ⅕)
•  Proof: choose e2, e3, e4, e5 so that eigenvectors form a basis
•  (guaranteed by the spectral theorem since A is symmetric)
•  so x0= a1 e1 + a2 e2 + a3 e3+ a4 e4 +a5 e5, for some a1, a2, a3 , a4 , a5
•  Now xt= x0 At =

 = a1 e1 At + a2 e2 At + a3 e3 At + a4 e4 At + a5 e5 At

 = a1 e1 λ1
t + a2 e2 λ2

t + a3 e3 λ3
t + a4 e4 λ4

t + a5 e5 λ5
t

 → a1 e1, as t→∞
•  since e1= (⅕, ⅕, ⅕, ⅕, ⅕) is a distribution, it must be that a1=1
•  Hence xt→ (⅕, ⅕, ⅕, ⅕, ⅕), as t→∞

1
2

3

4
5

½ 0 0 0 ½
0 ½ ½ 0 0
½ 0 0 ½ 0
0 0 ½ 0 ½
0 ½ 0 ½ 0

More General Theorem
•  Given directed graph G
•  Take A = adjacency matrix where row i is divided by the out-degree di of i
•  (Under mild conditions*) A has eigenvalue 1 with multiplicity 1 and all other

eigenvalues will have absolute value <1
•  Moreover, if e1 be the (unique) left eigenvector corresponding to eigenvalue 1,
•  then e1 will have all components positive.
•  Normalize it so that it is a distribution.
•  Theorem: A random walk on G started anywhere will converge to distribution e1!
•  e1 is called the “stationary distribution of G”

•  (Fundamental Theorem of Markov Chains)

•  Two obvious Questions:
–  why is x∞ interesting?
–  how fast does xt→x∞ ?

Menu

•  Minimum-cut
•  Random walks in graphs

– Pagerank

Pagerank
•  No better proof that something is useful than having interesting applications J
•  It turns out that random walks have a famous one: PageRank.
•  PageRank of a webpage p ≈* Probability that a web-surfer starting from some

central page (e.g. Yahoo!) and following random weblinks arrives at webpage p
in infinite steps.

•  How compute this probability?
•  Form graph G = the hyperlink graph;
•  Namely, G has a node for every webpage, and there is an edge from webpage p1

to webpage p2 iff there is a hyperlink from p1 to p2.
•  Compute stationary distribution of G, i.e. the left eigenvector of the (normalized

by out-degrees) adjacency matrix A of G, corresponding to eigenvalue 1.
•  How compute stationary distribution?
•  Idea 1: Crawl the web, create giant A, solve eigenvalue problem.
•  Runtime O(n3) using Gaussian elimination
•  too much for n = size of the web

Pagerank
•  Graph G = the hyperlink graph
•  Compute stationary distribution of G, i.e. the left eigenvector of the (normalized by

out-degrees) adjacency matrix A of G, corresponding to eigenvalue 1.
•  How compute stationary distribution?
•  Different (better?) idea:
•  Forget linear algebra;
•  Start at some central page and do random walk for a few steps (how many?);
•  Restart and repeat (how many times?);
•  then take PageRank(p) ≈ empirical probability that random walk ended at p.
•  If web-graph is well-connected*, hope that empirical distribution should be good

approximation to stationary distribution for the right choice of “how many” above…
•  or at least for the top components of the eigenvector, which are the most important

for ranking the top results.
•  *caveat: In reality, Pagerank corresponds to the stationary distribution of a random

surfer who does the following at every step: with probability 15% jumps to a
random page (called a restart), &with probability 85% jumps to a random neighbor.

•  Same theory applies.

Menu

•  Minimum-cut
•  Random walks in graphs

– Pagerank
– How fast does xt→x∞ ?

“Mixing Time”
•  Captures the speed at which xt→x∞

•  Speed depends on connectivity of G.
•  Sometimes G is given to us and we can’t change it.
•  But sometimes we design G .
•  e.g. in card shuffling
•  type of shuffle defines connectivity of the graph between

deck configurations…

Card Shuffling Graph

… …

“ ” : reachable via a particular move defined by shuffle

stationary distribution of a correct shuffle?
probability 1/52! on each permutation

while performing the shuffle we jump from node to node of this graph

Effect of Shuffle to Mixing Time

- Top-in-at-Random:	

 take top card and stick it to random location	

- Riffle Shuffle:

Number of repetitions to be close to uniform permutation?	

~300 repetitions	

Number of repetitions?	

 ~10	

Different shuffles have different mixing times. Examples:	

So different shuffles have different graphs with different mixing times.	

Summary
Randomness is useful	

As are the other techniques we saw in this class	

When facing an algorithmic problem:	

•  understand it	

•  try brute force first	

•  then try to improve it using:	

•  a cool data structure such as an AVL tree/heap/hash table	

•  a cool algorithmic technique such as Divide and Conquer, or DP	

•  map it to a graph problem and use off the shelf algorithm such
as BFS/DFS/Dijkstra/Bellman-Form/Topological Sort	

•  or modify these algorithms	

•  If everything else fails, maybe NP-hard? Try to reduce an NP-hard
problem to your problem.	

•  Look at a catalog of NP-hard problems, find a similar problem to
your problem and try to reduce that problem to your problem.	

•  Great hanging out every Tuesday and Thursday	

•  Evaluate class: http://web.mit.edu/subjectevaluation/evaluate.html	

