
6.006- Introduction to Algorithms

Lecture 21
Prof. Constantinos Daskalakis

CLRS 15

Menu

•  Text Justification
•  Structured Dynamic Programming

– Vertex Cover on trees
– Parsimony: recovering the tree of life

Menu

•  Text Justification
•  Structured Dynamic Programming

– Vertex Cover on trees
– Parsimony: recovering the tree of life

Text Justification – Word Processing
•  A user writes stream of text
•  WP has to break it into lines that aren’t too long
•  obvious algorithm => greedy:

–  put as much on first line as possible
–  then continue to lay out rest
–  used by MSWord, OpenOffice

•  Problem: suboptimal layouts !!

e.g. blah blah blah
b l a h
reallylongword

blah blah
blah blah
reallylongword

vs

A Better Approach

•  formalize layout as an optimization problem
•  define a scoring rule

– takes as input partition of words into lines
– measures how good the layout is

•  it’s not an algorithm, just a metric
•  find the layout with best score

– here’s where you think of algorithm

Layout Function
•  Want to penalize big spaces. What objective would do

that?
–  sum of leftover spaces?
–  then

–  i.e. it’s the same for two layouts with the same
number of lines (just total space minus number of
characters)

•  should penalize big spaces “extra”
–  (LaTeX uses sum of cubes of leftovers)

blah blah blah
b l a h
reallylongword

blah blah
blah blah
reallylongword

as good as

Formally

•  input: array of word lengths w[1..n]
•  split into lines L1, L2 …
•  badness of a line:

 badness(L) = (page width – total length(L))

– (or if total length of line > page width)
•  objective: break into lines L1, L2… minimizing

 Σi badness(Li)

8

3

Can We DP?
•  Subproblems?

–  DP[i] = min badness for words w[i:n]
(i.e. the score of the best layout of words w[i],…,w[n])
–  n subproblems where n is number of words

•  Decision for problem i?
–  where to end first line in optimal layout of words w[i:n]

•  Recurrence?
–  DP[i] = minj in range(i+1,n) (badness(w[i:j]) + DP[j+1])
–  DP[n+1]=0
–  OPT = DP[1]

•  Runtime? O(n2) ?

Menu

•  Text Justification
•  Structured Dynamic Programming

– Vertex Cover on trees
– Parsimony: recovering the tree of life

Vertex cover

•  Find a minimum set of vertices
that contains at least one
endpoint of each edge

•  (like placing guards in a house
to guard all corridors)

•  NP-hard in general

Vertex cover

•  Find a minimum set of vertices
that contains at least one
endpoint of each edge

•  (like placing guards in a house
to guard all corridors)

•  NP-hard in general
•  We will see a polynomial (in n)

time algorithm for trees of size n
•  Ideas ?

Vertex cover: algorithm

•  Let cost(v,b) be the min-cost solution of the sub-tree
rooted at v, assuming v’s status is b∈{YES,NO}

•  where YES corresponds to “v included in the vertex
cover” and NO to “not included in the vertex cover”

•  Recurrence for cost(v,b)
 cost(v,YES)=
 cost(v,NO)=

•  Base case v=leaf:
 cost(v,YES)=1
 cost(v,NO)=0

•  Running time ?
•  Because constant amount of work per edge of the

tree in the execution of the algorithm

v

u1 u2
1+minb1 cost(u1,b1)+ minb2cost(u2,b2)+…

cost(u1,YES)+cost(u2,YES)+….

O(n)
include a term for
all children of v

What if graph is not a tree?
•  For trees, we had two subproblems corresponding to

whether we included a vertex in the vertex cover or not..
•  For general graphs, the existence of small separators is

good enough.
•  We can have a DP subproblem for all possible joint states

of the vertices in the separators.
•  Notion of “treewidth” of a graph (advanced material)

Menu

•  Text Justification
•  Structured Dynamic Programming

– Vertex Cover on trees
– Parsimony: recovering the tree of life

The Tree of Life

ACCGT…

AACGT… ACGGT…

ACTGT… TCGGT…

ACTGT… ACCGT…
TCGGA… TCCGT…

TCCGA…
ACCTT…

TCAGA… GCCGA…

time

- 3 million years

today

The Computational Problem

ACCGT…

AACGT… ACGGT…

ACTGT… TCGGT…

ACTGT… ACCGT…
TCGGA… TCCGT…

TCCGA…
ACCTT…

TCAGA… GCCGA…

time

- 3 million years

today

ACTGT… ACCGT…
TCGGA…

ACCTT…

TCAGA… GCCGA…

?

The Computational Problem

time

- 3 million years

today

Useful Subroutine: Scoring a proposed tree
•  A desired property of a plausible tree:

 Explains how the observed DNA
sequences came about using few
mutations.

•  Such tree has “high parsimony”.
•  Algorithmic problem. Given:

–  n “leaf strings” of length m each,
with letters from {A, C, G, T}

–  a tree
•  Goal: find “inner node” sequences

that minimize the sum of all mutations
along all edges

•  This is the parsimony of the tree.
•  Algorithmic Ideas ?

GTTC

GCTA

ACGA ATGA

GTTA

GCTA

ACGA

1

2

1 1

0

0

parsimony = 5

Parsimony: algorithm

•  Observation I: we can
consider one letter at a
time

•  Observation II: can use
dynamic programming
to find the best inner-
node letters

GTTC

GCTA

ACGA ATGA

 G

 G

 A

0

1

0 0

0

0

Parsimony: dynamic program
•  Define letter distance as follows

 D(a,b)=0 if a=b and =1 otherwise

•  For any node v of the tree and label L in {A, C, G,
T}, define cost(v,L)

•  This is the minimum cost for the subtree rooted at
v, if v is labeled L

•  solution=minL cost(root,L)

•  Recurrence for cost(v,L) ?

 cost(v,L)=minL1, L2 (D(L,L1)+D(L,L2)+cost(u1,L1)+ cost(u2,L2))

•  Base case: if v is a leaf
 cost(v,L)= ∞*D(L,given_label(v))

G

G

A A

L
v

L1
L2 u1

u2

Parsimony: analysis

•  We have
cost(v,L)=minL1, L2 D(L,L1)+D(L,L2)+cost(u1,L1)+ cost(u2,L2)

•  Equivalently
 cost(v,L) = minL1D(L,L1)+cost(u1,L1) +
 minL2D(L,L2)+cost(u2,L2)
•  Running time?

O(n k) * O(k) = O(nk2)
 where k is the alphabet size

G

G

A A

L

L1
L2

v

u1

u2

