6.006- Introduction to Algorithms

RRRRRRRRRRRRRR

Lecture 20

Prof. Constantinos Daskalakis

Lecture overview

— longest common subsequence:

* the bottom-up approach

» reconstructing the LCS: back-pointers
— knapsack

Longest Common Subsequence

given two sequences x[1..m] and y[1..n], find a longest
subsequence LCS(x,y) common to both:

A/B C B D A B
BDC/AB/A/

find the length of a longest common subsequence

V.

DP subproblem:

c(i, j)= length of longest common subsequence between
strings x[1..7] and y[1.j]

1) x[1..i] and y[1.,/] end with x=y;

‘X1 Xy eeo Xi-l‘ Xi‘

iy, - yj—l‘yj=xi

[might as well match x; and y; and look for LCS of
x[1..i-1] and y[1..j-1].
So

c(i, j) = c(i-1, J-1)+1, if x~y;

2) x|1..7] and y[1.y] end with x; =y

iy ... yj—l‘ Y= X;

e

‘xl Xy oee Xiq xi‘ X1 X, "'Xi-lx‘
‘Y1Y2 Yj-1bd m)ﬁyZ ym

LCS of x[1..7] and y[1..7-1] LCS of x[1..i-1] and y[1..j]

c(i,j)=max{c(i,j—1), C(i'laj)}a if Xﬁﬁyj

Solving LCS with Recursion+Memoization

cli-1,j-1]+1 ifx, =y,
C[laj] =9 : : A :
max{cli-1j]cli,j-1]} otherwise
memo = { }
c(i,)):

if (i, /) iIn memo: return memoli, j]
else if i=0 OR ;j=0: return 0

else it x~y;: t = c(i-1, j-1)+1

else f =max{c(i, j-1), c(i-1,))}
memoli, j]=f

return

return c(n,m)

The Bottom-Up Approach

cli-1,j-1]+1 ifx, =y,
cli,jl =1

max{cli-1j]cli,j-1]} otherwise

“bottom-up approach”: solve sub-problems in an
order that allows you to never recurse

The Bottom-Up Approach

cli-1,j-1]+1 ifx, =y,
C[laj] =1 : : o :
max{cli-1j]cli,j-1]} otherwise
c.g.x: ABCB j=0 ;=1 ;=2 ;=3
y: BDC B | D | C
0| 0] 0
AN

N

¢(0,0)=0 i= ¢(0.3)=0
=4 B | 0 o(2,1)=nfdx(pd,1),c(1,0))

The Bottom-Up Approach

Length of Longest Common Subsequence(x,y)
m «— length|x]

n «— length[y] o feli-1j-1]+1 ifx; =y,
fori<—1tom cli,j]l= . o e .
do c[i, 0] — 0 max{c[i -1,j],c[i,j —1]} otherwise
forj<—Oton
do ¢[0, j)] < O

fori—1tom
do forj — 1ton
doifx; =y,

then c[i, j] < c[i-1,j-1]+ 1
[,] < N7 e
else if c[i-1, 7 | > c[i, j-1]
then c[i, j] < c[i-1,/]

7 parent pointers

return c and p

Why parent pointers?

* Goal: finding a longest common subsequence

— p remembers if the c[i, j] computation used
cli-1, j-1], c[i, j-1], or c[i-1/]
* Here 1s how they are used:
 Starting at c¢[m, n], look at parent pointer p[m,n]
e if 1t points to (m-1,n-1), then x[m]=y[n] 1s part of
opt

—put x[m] at end of output string, jump to square
(m-1,n-1) and continue building op? from there

e ¢lse, build opf from squares (m-1,n) or (m,n-1)
depending on where p[m,n] points

* repeat

Constructing an LCS

PRINT-LCS (p, x, i, j)
ifi=0or;j=0
then return
if p[i, j1="N\
then PRINT-LCS(p, x, i-1, j-1)
print x,
elseif p[i, j] =“1”
then PRINT-LCS(p, x, i-1, j)
else PRINT-LCS(p, x, i, j-1)

initial call 1s PRINT-LCS (p, x, m, n)
running time: O(m+n)

E
xample

A0

40

A0

M
-
.

0

< /A

Lecture overview

— longest common subsequence:
* the bottom-up approach
» reconstructing the LCS: back-pointers

—the DP DAG
— knapsack

Generalization: Bottom-Up DP

* we’ve seen DP recurrences
— which suggest recursive implementation

— ...with memoization to avoid re-computing
intermediate results

* we’ve also seen “bottom up” implementations

— order sub-problems in a way that allows
answering bigger sub-problems using already
computed solutions to smaller sub-problems

* how to get a good ordering?

The DP DAG

 define a graph representing DP
— sub-problems are vertices
— edge x — y if problem x depends on problem y
* what order of problem solving works?
— need order where x follows yif x — y
— Topological Sort!
— can do so 1f graph 1s a DAG
— what 1f not?
e cyclic problem dependency
e can’t use DP

Lecture overview

— longest common subsequence:
* the bottom-up approach
» reconstructing the LCS: back-pointers

—the DP DAG
— Knapsack

Knapsack Problem

« Knapsack (or cart) of size S
¢ Collection of n items; item i has size s; and value v; |
* Goal: choose subset with:
— 2.5, <§ (feasible, 1.e. fits in knapsack)
— maximize 2, v,
* Ideas?
— try all possible subsets: 27
— greedy?
* choose 1items maximizing value ?
 choose items maximizing value/size

— great, but what 1f items don’t exactly fit (non-
divisible items)?

Some bad and better news

 For arbitrary sizes, Knapsack 1s hard (NP-hard)
—no polynomial time algorithm 1n 40 years of trying

— 1t’s exactly as hard as several thousand other
important problems

— and we haven’t been able to find polynomial time
algorithms for them for 40 years of trying either

— most people think there 1s none
* Better news:

— There 1s a DP algorithm 1f sizes are integers from a
small range

First attempt for DP Algorithm

* subproblem?

— Val[i] = Best value obtained if only items|i:#]
were available to choose from

* recurrence’?
— Val[i] = best of

enough info

namely, 1n a correct recursion
these should be different values

Second Attempt

* Solve a more complicated problem
— of which the 1nitial problem 1s a special case

* Val|i, X] = max value 1f one can choose from i1tems
[i : n] and available size 1s X
* Recurrence for Val[i, X]:
—1f s, > X, then can’t include i, so Val[i, X] = Val[i+1, X]
— otherwise:
 Val[i, X] =max(Val[i + 1, X], v, + Val[i + 1, X —s/])
. OPT = Val[l, S]

Analysis

(Valli + 1, X], ifs; > X

-

Val[z, X] = <

_ \max(Val[i + 1, X],v; + Val[i + 1, X — s;])

Is the recurrence a DAG?

J

— yes, each problem depends on bigger i and smaller X
— compute by decreasing i and increasing X
Runtime?
— O(n S) subproblems and work per subproblem 1s O(1)
— So total time: O(n S)
Is this polynomial?
Looks polynomial but it 1sn’t: to describe S need log,S bits

“Pseudo-polynomial time”: exponential dependence on numerical
inputs, but polynomial dependence on everything else

