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Lecture overview 

– longest common subsequence: 
• the bottom-up approach 
• reconstructing the LCS: back-pointers 

– knapsack 



Longest Common Subsequence 
•  given two sequences x[1..m] and y[1..n], find a longest 

subsequence LCS(x,y) common to both: 

 x:   A  B  C  B  D  A  B 

 y:   B  D  C  A  B  A 

•  find the length of a longest common subsequence 
•  DP subproblem: 
•  c(i, j)= length of longest common subsequence between 

strings x[1..i] and y[1..j] 



1) x[1..i] and y[1..j] end with xi=yj 

x1  x2   … xi-1   xi 

I might as well match xi and yj and look for LCS of 
x[1..i-1] and y[1..j-1].  
So  

            c(i, j) = c(i-1, j-1)+1, if xi=yj 

y1 y2     …    yj-1  yj=xi 



2) x[1..i] and y[1..j] end with xi ≠ yj 

LCS of x[1..i] and y[1..j-1] 

c(i, j)=max{c(i, j-1), c(i-1, j)}, if xi≠yj 

LCS of x[1..i-1] and y[1..j] 

x1  x2   … xi-1   xi 

y1 y2     …    yj-1  yj ≠ xi 

x1  x2   … xi-1   xi 

y1 y2     …    yj-1  yj 

x1  x2   … xi-1   x i 

yj y1 y2     …yj-1  yj 



! 

c[i, j] =
c[i "1, j "1] +1                  if xi = y j

max{c[i "1, j],c[i, j "1]}  otherwise

# 
$ 
% 

memo = { }        
c(i, j):            

if (i, j) in memo: return memo[i, j]            
else if i=0 OR  j=0: return 0            
else if xi=yj: f = c(i-1, j-1)+1                
else f = max{c(i, j-1), c(i-1, j)}               
memo[i, j]=f                
return f 

return c(n,m) 

Solving LCS with Recursion+Memoization 



! 

c[i, j] =
c[i "1, j "1] +1                  if xi = y j

max{c[i "1, j],c[i, j "1]}  otherwise

# 
$ 
% 

The Bottom-Up Approach 

“bottom-up approach”: solve sub-problems in an 
order that allows you to never recurse 



! 

c[i, j] =
c[i "1, j "1] +1                  if xi = y j

max{c[i "1, j],c[i, j "1]}  otherwise

# 
$ 
% 

The Bottom-Up Approach 

 e.g. x:  ABCB 
        y:  BDC 

i=0 

i=1 

i=2 

i=3 

i=4 

j=0 j=1 j=2 j=3 

c(0,0)=0 c(0,3)=0 
c(1,1)=max(c(0,1),c(1,0)) c(1,1)=max(c(0,1),c(1,0)) c(2,1)=c(1,1)+1 c(2,1)=c(1,1)+1 



The Bottom-Up Approach 
Length of Longest Common Subsequence(x,y) 
m ← length[x] 
n ← length[y] 
for i ← 1 to m 
     do c[i, 0] ← 0 
for j ← 0 to n 
     do c[0, j] ← 0 
for i ← 1 to m 
     do for j ← 1 to n 
           do if xi = yj 
                    then c[i, j] ← c[i-1, j-1] + 1 
                            p[i, j] ← “   ” 
                    else if c[i-1, j ] ≥ c[i, j-1] 
                           then c[i, j] ← c[i-1, j] 
                                   p[i, j] ← “↑” 
                           else  c[i, j] ← c[i, j-1] 
                                   p[i, j] ← “←” 
return c and p 

! 

c[i, j] =
c[i "1, j "1] +1                  if xi = y j

max{c[i "1, j],c[i, j "1]}  otherwise

# 
$ 
% 

parent pointers 



Why parent pointers? 
•  Goal: finding a longest common subsequence 

– p remembers if the c[i, j] computation used  
c[i-1, j-1], c[i, j-1], or c[i-1,j] 

•  Here is how they are used: 
•  Starting at c[m, n], look at parent pointer p[m,n] 

•  if it points to (m-1,n-1), then x[m]=y[n] is part of 
opt 

– put x[m] at end of output string, jump to square 
(m-1,n-1) and continue building opt from there 

• else, build opt from squares (m-1,n) or (m,n-1) 
depending on where p[m,n] points 

•  repeat 



Constructing an LCS 

PRINT-LCS (p, x, i, j) 
if i = 0 or j = 0 
    then return 
if p[i, j] = “   ” 
    then PRINT-LCS(p, x, i-1, j-1) 
             print xi 
    elseif p[i, j] = “↑” 
              then PRINT-LCS(p, x, i-1, j) 
else PRINT-LCS(p, x, i, j-1) 

initial call is PRINT-LCS (p, x, m, n) 
running time: O(m+n) 



Example 
 x:  A  B  C  B 
 y:  B  D  C 
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Generalization: Bottom-Up DP 
•  we’ve seen DP recurrences 

– which suggest recursive implementation  
– …with memoization to avoid re-computing 

intermediate results 
•  we’ve also seen “bottom up” implementations 

– order sub-problems in a way that allows 
answering bigger sub-problems using already 
computed solutions to smaller sub-problems 

•  how to get a good ordering? 



The DP DAG 

•  define a graph representing DP 
–  sub-problems are vertices 
–  edge  x → y  if problem x depends on problem y 

•  what order of problem solving works? 
–  need order where x follows y if x → y  
–  Topological Sort! 
–  can do so if graph is a DAG 
– what if not? 

•  cyclic problem dependency 
•  can’t use DP 
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Knapsack Problem 
•  Knapsack (or cart) of size S 
•  Collection of n items; item i has size si and value vi 

•  Goal: choose subset with:  
‒  Σi si < S (feasible, i.e. fits in knapsack) 
–  maximize Σi vi 

•  Ideas? 
–  try all possible subsets: 2n 

–  greedy? 
•  choose items maximizing value ? 
•  choose items maximizing value/size 

– great, but what if items don’t exactly fit (non-
divisible items)? 



Some bad and better news 
•  For arbitrary sizes, Knapsack is hard (NP-hard) 

– no polynomial time algorithm in 40 years of trying 
–  it’s exactly as hard as several thousand other 

important problems  
– and we haven’t been able to find polynomial time 

algorithms for them for 40 years of trying either 
– most people think there is none 

•  Better news: 
– There is a DP algorithm if sizes are integers from a 

small range 



First attempt for DP Algorithm 

•  subproblem? 
– Val[i] = Best value obtained if only items[i:n] 

were available to choose from 
•  recurrence? 

– Val[i] = best of Val[i+1] or vi + Val[i+1],  
•  not a well-defined recurrence: doesn’t have 

enough info 

namely, in a correct recursion 
these should be different values 



Second Attempt 

•  Solve a more complicated problem 
– of which the initial problem is a special case 

•  Val[i, X] = max value if one can choose from items
[i : n] and available size is X 

•  Recurrence for Val[i, X]: 
–  if si > X, then can’t include i, so Val[i, X] = Val[i+1, X]  
–  otherwise: 

• Val[i, X] = max(Val[i + 1, X], vi + Val[i + 1, X – si]) 
•  OPT = Val[1, S] 



Analysis 

•  Is the recurrence a DAG? 
–  yes, each problem depends on bigger i and smaller X 
–  compute by decreasing i and increasing X 

•  Runtime? 
–  O(n S) subproblems and work per subproblem is O(1) 
–  So total time: O(n S) 

•  Is this polynomial? 
•  Looks polynomial but it isn’t: to describe S need log2S bits 
•  “Pseudo-polynomial time”: exponential dependence on numerical 

inputs, but polynomial dependence on everything else 

Val[i,X] =






Val[i+ 1, X], if si > X

max(Val[i+ 1, X], vi +Val[i+ 1, X − si])


