
6.006- Introduction to Algorithms

Lecture 20
Prof. Constantinos Daskalakis

Lecture overview

– longest common subsequence:
• the bottom-up approach
• reconstructing the LCS: back-pointers

– knapsack

Longest Common Subsequence
•  given two sequences x[1..m] and y[1..n], find a longest

subsequence LCS(x,y) common to both:

 x: A B C B D A B

 y: B D C A B A

•  find the length of a longest common subsequence
•  DP subproblem:
•  c(i, j)= length of longest common subsequence between

strings x[1..i] and y[1..j]

1) x[1..i] and y[1..j] end with xi=yj

x1 x2 … xi-1 xi

I might as well match xi and yj and look for LCS of
x[1..i-1] and y[1..j-1].
So

 c(i, j) = c(i-1, j-1)+1, if xi=yj

y1 y2 … yj-1 yj=xi

2) x[1..i] and y[1..j] end with xi ≠ yj

LCS of x[1..i] and y[1..j-1]

c(i, j)=max{c(i, j-1), c(i-1, j)}, if xi≠yj

LCS of x[1..i-1] and y[1..j]

x1 x2 … xi-1 xi

y1 y2 … yj-1 yj ≠ xi

x1 x2 … xi-1 xi

y1 y2 … yj-1 yj

x1 x2 … xi-1 x i

yj y1 y2 …yj-1 yj

!

c[i, j] =
c[i "1, j "1] +1 if xi = y j

max{c[i "1, j],c[i, j "1]} otherwise

$
%

memo = { }
c(i, j):

if (i, j) in memo: return memo[i, j]
else if i=0 OR j=0: return 0
else if xi=yj: f = c(i-1, j-1)+1
else f = max{c(i, j-1), c(i-1, j)}
memo[i, j]=f
return f

return c(n,m)

Solving LCS with Recursion+Memoization

!

c[i, j] =
c[i "1, j "1] +1 if xi = y j

max{c[i "1, j],c[i, j "1]} otherwise

$
%

The Bottom-Up Approach

“bottom-up approach”: solve sub-problems in an
order that allows you to never recurse

!

c[i, j] =
c[i "1, j "1] +1 if xi = y j

max{c[i "1, j],c[i, j "1]} otherwise

$
%

The Bottom-Up Approach

 e.g. x: ABCB
 y: BDC

i=0

i=1

i=2

i=3

i=4

j=0 j=1 j=2 j=3

c(0,0)=0 c(0,3)=0
c(1,1)=max(c(0,1),c(1,0)) c(1,1)=max(c(0,1),c(1,0)) c(2,1)=c(1,1)+1 c(2,1)=c(1,1)+1

The Bottom-Up Approach
Length of Longest Common Subsequence(x,y)
m ← length[x]
n ← length[y]
for i ← 1 to m
 do c[i, 0] ← 0
for j ← 0 to n
 do c[0, j] ← 0
for i ← 1 to m
 do for j ← 1 to n
 do if xi = yj
 then c[i, j] ← c[i-1, j-1] + 1
 p[i, j] ← “ ”
 else if c[i-1, j] ≥ c[i, j-1]
 then c[i, j] ← c[i-1, j]
 p[i, j] ← “↑”
 else c[i, j] ← c[i, j-1]
 p[i, j] ← “←”
return c and p

!

c[i, j] =
c[i "1, j "1] +1 if xi = y j

max{c[i "1, j],c[i, j "1]} otherwise

$
%

parent pointers

Why parent pointers?
•  Goal: finding a longest common subsequence

– p remembers if the c[i, j] computation used
c[i-1, j-1], c[i, j-1], or c[i-1,j]

•  Here is how they are used:
•  Starting at c[m, n], look at parent pointer p[m,n]

•  if it points to (m-1,n-1), then x[m]=y[n] is part of
opt

– put x[m] at end of output string, jump to square
(m-1,n-1) and continue building opt from there

• else, build opt from squares (m-1,n) or (m,n-1)
depending on where p[m,n] points

•  repeat

Constructing an LCS

PRINT-LCS (p, x, i, j)
if i = 0 or j = 0
 then return
if p[i, j] = “ ”
 then PRINT-LCS(p, x, i-1, j-1)
 print xi
 elseif p[i, j] = “↑”
 then PRINT-LCS(p, x, i-1, j)
else PRINT-LCS(p, x, i, j-1)

initial call is PRINT-LCS (p, x, m, n)
running time: O(m+n)

Example
 x: A B C B
 y: B D C

Lecture overview

– longest common subsequence:
• the bottom-up approach
• reconstructing the LCS: back-pointers

– the DP DAG
– knapsack

Generalization: Bottom-Up DP
•  we’ve seen DP recurrences

– which suggest recursive implementation
– …with memoization to avoid re-computing

intermediate results
•  we’ve also seen “bottom up” implementations

– order sub-problems in a way that allows
answering bigger sub-problems using already
computed solutions to smaller sub-problems

•  how to get a good ordering?

The DP DAG

•  define a graph representing DP
–  sub-problems are vertices
–  edge x → y if problem x depends on problem y

•  what order of problem solving works?
–  need order where x follows y if x → y
–  Topological Sort!
–  can do so if graph is a DAG
– what if not?

•  cyclic problem dependency
•  can’t use DP

Lecture overview

– longest common subsequence:
• the bottom-up approach
• reconstructing the LCS: back-pointers

– the DP DAG
– knapsack

Knapsack Problem
•  Knapsack (or cart) of size S
•  Collection of n items; item i has size si and value vi

•  Goal: choose subset with:
‒  Σi si < S (feasible, i.e. fits in knapsack)
–  maximize Σi vi

•  Ideas?
–  try all possible subsets: 2n

–  greedy?
•  choose items maximizing value ?
•  choose items maximizing value/size

– great, but what if items don’t exactly fit (non-
divisible items)?

Some bad and better news
•  For arbitrary sizes, Knapsack is hard (NP-hard)

– no polynomial time algorithm in 40 years of trying
–  it’s exactly as hard as several thousand other

important problems
– and we haven’t been able to find polynomial time

algorithms for them for 40 years of trying either
– most people think there is none

•  Better news:
– There is a DP algorithm if sizes are integers from a

small range

First attempt for DP Algorithm

•  subproblem?
– Val[i] = Best value obtained if only items[i:n]

were available to choose from
•  recurrence?

– Val[i] = best of Val[i+1] or vi + Val[i+1],
•  not a well-defined recurrence: doesn’t have

enough info

namely, in a correct recursion
these should be different values

Second Attempt

•  Solve a more complicated problem
– of which the initial problem is a special case

•  Val[i, X] = max value if one can choose from items
[i : n] and available size is X

•  Recurrence for Val[i, X]:
–  if si > X, then can’t include i, so Val[i, X] = Val[i+1, X]
–  otherwise:

• Val[i, X] = max(Val[i + 1, X], vi + Val[i + 1, X – si])
•  OPT = Val[1, S]

Analysis

•  Is the recurrence a DAG?
–  yes, each problem depends on bigger i and smaller X
–  compute by decreasing i and increasing X

•  Runtime?
–  O(n S) subproblems and work per subproblem is O(1)
–  So total time: O(n S)

•  Is this polynomial?
•  Looks polynomial but it isn’t: to describe S need log2S bits
•  “Pseudo-polynomial time”: exponential dependence on numerical

inputs, but polynomial dependence on everything else

Val[i,X] =






Val[i+ 1, X], if si > X

max(Val[i+ 1, X], vi +Val[i+ 1, X − si])

