
6.006- Introduction to Algorithms 

Lecture 19 
Prof. Constantinos Daskalakis 



Lecture overview 

– review of last lecture  
• key aspects of Dynamic Programming (DP) 
• all-pairs shortest paths as a DP 

– a smarter DP for all-pairs shortest paths 
– longest common subsequence 

CLRS 15.3, 15.4, 25.1, 25.2 



Dynamic Programming Definition 
•  DP ≈ Recursion + Memoization 
•  Typically, but not always, applied to optimization 

problems – so far: Fibonacci, Crazy eights, SPPs 
•  DP works when: 

–  the solution can be produced by combining solutions 
to subproblems;  

–  the solution to each subproblem can be produced by 
combining solutions to sub-subproblems, etc;  

moreover it’s efficient when…. 
–  the total number of subproblems arising recursively 

is polynomial.  

e.g. Fn=Fn-1+Fn-2 

Fn-1=Fn-2+Fn-3 Fn-2=Fn-3+Fn-4 

F1, F2,…, Fn 
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Optimal substructure  
The solution to a problem can be obtained by 

solutions to subproblems. Fn=Fn-1+Fn-2 

Overlapping Subproblems 
A recursive solution contains a “small” number of 

distinct subproblems (repeated many times) 
F1, F2,…, Fn 



All-pairs shortest paths 

•  Input: Directed graph G = (V, E), where V = {1,…, n}, 
with edge-weight function w : E → R.  

•  Output: An n × n matrix of shortest-path lengths δ(i, j) 
for all i, j ∈ V. 

Assumption: No negative-weight cycles 



Dynamic Programming Approach 

•  Consider the n × n matrix A = (aij), where: 
–   aij=w(i,j), if (i, j) ∈ E, 0, if i=j, and +∞, otherwise.   

•  and define:  
– dij

(m) = 

•  Want: dij
(n-1) 

•  dij
(0) = 0, if i = j, and +∞, if i ≠ j;  

Claim: For m = 1, 2, …, n–1,  
  dij

(m) = mink{dik
(m–1) + akj }.  

weight of a shortest path from i to j that 
uses at most m edges 



Proof of Claim 

…
	  

≤	  m-‐1	  edge
s	  

≤	  m-‐1	  edges	  i j 

k’s 
dij

(m) = mink{dik
(m–1) + akj }  

for k ← 1 to n  
if dij > dik + akj  

dij ← dik + akj 

“Relaxation” (recall Bellman-Ford lecture) 



Dynamic Programming Approach 
•  Consider the n × n matrix A = (aij), where: 

§   aij=w(i,j), if (i, j) ∈ E, 0, if i=j, and +∞, otherwise.   
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(m) = 

•  Want: dij
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  dij
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weight of a shortest path from i to j that only uses 
at most m edges 

O(n4) - similar to n runs of Bellman-Ford 



Another DP Approach 
•  Consider the n × n matrix A = (aij), where: 
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O(n4) - similar to n runs of Bellman-Ford 



Another DP Approach 
•  Consider the n × n matrix A = (aij), where: 

§   aij=w(i,j), if (i, j) ∈ E, 0, if i=j, and +∞, otherwise.   
•  and define:  

§  dij
(m) = 

•  Want: dij
(n) 

•  dij
(0) = aij;  

Claim: For m = 1, 2, …, n,  
  dij

(m) = min{dij
(m-1),dim

(m–1) +dmj
(m–1)}.  

weight of a shortest path from i to j that only uses 
intermediate vertices from set {1,…,m} 



Proof of Claim 

m 

i 
j 

only labels in {1,…,m-1} 

only labels in {1,…,m-1} 

  dij
(m) = min{dij

(m-1), dim
(m–1) +dmj

(m–1)}  



Another DP Approach 
•  Consider the n × n matrix A = (aij), where: 

§   aij=w(i,j), if (i, j) ∈ E, 0, if i=j, and +∞, otherwise.   
•  and define:  

§  dij
(m) = 

•  Want: dij
(n) 

•  dij
(0) = aij;  

Claim: For m = 1, 2, …, n,  
  dij

(m) = min{dij
(m-1),dim

(m–1) +dmj
(m–1)}.  

weight of a shortest path from i to j that only uses 
intermediate vertices from set {1,…,m} 

O(n3) running time (Floyd-Warshall) 



Lecture overview 

– review of last time 
• key aspects of Dynamic Programming (DP) 
• all-pairs shortest paths as a DP 

– another DP for all-pairs shortest paths 
– longest common subsequence 



Longest Common Subsequence 

•  given two sequences x[1..m] and y[1..n], find a 
longest subsequence LCS(x,y) common to both: 

 x:   A  B  C  B  D  A  B 

 y:   B  D  C  A  B  A 

•  denote the length of a sequence s by |s| 
•  let us first try to get |LCS(x,y)| 



Applications of LCS 

•  Tons in bioinformatics, e.g. long preserved 
regions in genomes 

•  file comparison, e.g. diff 





Brute force solution 

•  Given x[1..m] and y[1..n], how do we get 
the |LCS(x,y)| ? 

•  For every subsequence of x[1..m] , check if 
it is a subsequence of y[1..n] 

•  Analysis: 
– 2m subsequences of x  
– each check takes Ο(n) time ... 
– (two finger algorithm) 
– worst-case running time is  Ο(n2m) 



Using prefixes 
•  consider prefixes of x and y 

– x[1..i] ith prefix of x[1..m] 
– y[1..j] jth prefix of y[1..n] 

•  subproblem: define c[i,j] = |LCS(x[1..i],y[1..j])| 

•  so c[m,n] = |LCS(x,y)| 

•  recurrence? 



1) x[1..i] and y[1..j] end with xi=yj 

x1  x2   … xi-1   xi 

I might as well match xi and yj and look for LCS of 
x[1..i-1] and y[1..j-1].  
So  

            c(i, j) = c(i-1, j-1)+1, if xi=yj 

where recall c[i,j] = |LCS(x[1..i],y[1..j])| 

y1 y2     …    yj-1  yj=xi 



Example - use of property 1 

x:   B  A  N  A  N  A 

y:   A  T  A  N  A 

by inspection LCS of B A N and A T is A 
so |LCS(x,y)| is 4 



2) x[1..i] and y[1..j] end with xi ≠ yj 

LCS of x[1..i] and y[1..j-1] 

c(i, j)=max{c(i, j-1), c(i-1, j)}, if xi≠yj 

LCS of x[1..i-1] and y[1..j] 

x1  x2   … xi-1   xi 

y1 y2     …    yj-1  yj ≠ xi 

x1  x2   … xi-1   xi 

y1 y2     …    yj-1  yj 

x1  x2   … xi-1   x i 

yj y1 y2     …yj-1  yj 



A recurrence, summary 
•  consider prefixes of x and y 

– x[1..i] ith prefix of x[1..m] 
– y[1..j] jth prefix of y[1..n] 

•  define c[i,j] = |LCS(x[1..i],y[1..j])| 
– so c[m,n] = |LCS(x,y)| 

•  recurrence: 

! 

c[i, j] =
c[i "1, j "1] +1                  if xi = y j

max{c[i "1, j],c[i, j "1]}  otherwise

# 
$ 
% 



Solving LCS with Recursion 

! 

c[i, j] =
c[i "1, j "1] +1                  if xi = y j

max{c[i "1, j],c[i, j "1]}  otherwise

# 
$ 
% 

c[ABCB,BDC] 

c[ABC,BDC]                            c[ABCB,BD] 

c[AB,BD]+1                              c[ABC,BD]                 c[ABCB,B] 

        c[A,BD]     c[AB,B]                 c[AB,BD]           c[ABC,B]               c[ABC,]+1 

c[,BD]=0   c[A,B]  c[A,]+1                                             c[AB,B]      c[ABC,]=0 

         c[,B]=0   c[A,]=0 

…
 

…
 



Solving LCS with Recursion+Memoization 

! 

c[i, j] =
c[i "1, j "1] +1                  if xi = y j

max{c[i "1, j],c[i, j "1]}  otherwise

# 
$ 
% 

c[ABCB,BDC] 

c[ABC,BDC]                            c[ABCB,BD] 

c[AB,BD]+1                              c[ABC,BD]                 c[ABCB,B] 

        c[A,BD]     c[AB,B]                 c[AB,BD]           c[ABC,B]               c[ABC,]+1 

c[,BD]=0   c[A,B]  c[A,]+1                                             c[AB,B]      c[ABC,]=0 

         c[,B]=0   c[A,]=0 

…
 

…
 



! 

c[i, j] =
c[i "1, j "1] +1                  if xi = y j

max{c[i "1, j],c[i, j "1]}  otherwise

# 
$ 
% 

memo = { }        
c(i, j):            

if (i, j) in memo: return memo[i, j]            
else if i=0 OR  j=0: return 0            
else if xi=yj: f = c(i-1, j-1)+1                
else f = max{c(i, j-1), c(i-1, j)}               
memo[i, j]=f                
return f 

return c(n,m) 

Solving LCS with Recursion+Memoization 



•  and the running time is O(n×m) 
! 

c[i, j] =
c[i "1, j "1] +1                  if xi = y j

max{c[i "1, j],c[i, j "1]}  otherwise

# 
$ 
% 

Solving LCS with Recursion+Memoization 


