
6.006- Introduction to Algorithms

Lecture 19
Prof. Constantinos Daskalakis

Lecture overview

– review of last lecture
• key aspects of Dynamic Programming (DP)
• all-pairs shortest paths as a DP

– a smarter DP for all-pairs shortest paths
– longest common subsequence

CLRS 15.3, 15.4, 25.1, 25.2

Dynamic Programming Definition
•  DP ≈ Recursion + Memoization
•  Typically, but not always, applied to optimization

problems – so far: Fibonacci, Crazy eights, SPPs
•  DP works when:

–  the solution can be produced by combining solutions
to subproblems;

–  the solution to each subproblem can be produced by
combining solutions to sub-subproblems, etc;

moreover it’s efficient when….
–  the total number of subproblems arising recursively

is polynomial.

e.g. Fn=Fn-1+Fn-2

Fn-1=Fn-2+Fn-3 Fn-2=Fn-3+Fn-4

F1, F2,…, Fn

Dynamic Programming Definition
•  DP ≈ Recursion + Memoization
•  Typically, but not always, applied to optimization

problems – so far: Fibonacci, Crazy eights, SPPs
•  DP works when:

–  the solution can be produced by combining solutions
to subproblems;

–  the solution to each subproblem can be produced by
combining solutions to sub-subproblems, etc;

moreover it’s efficient when….
–  the total number of subproblems arising recursively

is polynomial.

e.g. Fn=Fn-1+Fn-2

Fn-1=Fn-2+Fn-3 Fn-2=Fn-3+Fn-4

F1, F2,…, Fn

Optimal substructure
The solution to a problem can be obtained by

solutions to subproblems. Fn=Fn-1+Fn-2

Overlapping Subproblems
A recursive solution contains a “small” number of

distinct subproblems (repeated many times)
F1, F2,…, Fn

All-pairs shortest paths

•  Input: Directed graph G = (V, E), where V = {1,…, n},
with edge-weight function w : E → R.

•  Output: An n × n matrix of shortest-path lengths δ(i, j)
for all i, j ∈ V.

Assumption: No negative-weight cycles

Dynamic Programming Approach

•  Consider the n × n matrix A = (aij), where:
–  aij=w(i,j), if (i, j) ∈ E, 0, if i=j, and +∞, otherwise.

•  and define:
– dij

(m) =

•  Want: dij
(n-1)

•  dij
(0) = 0, if i = j, and +∞, if i ≠ j;

Claim: For m = 1, 2, …, n–1,
 dij

(m) = mink{dik
(m–1) + akj }.

weight of a shortest path from i to j that
uses at most m edges

Proof of Claim

…
	

≤	 m-‐1	 edge
s	

≤	 m-‐1	 edges	 i j

k’s
dij

(m) = mink{dik
(m–1) + akj }

for k ← 1 to n
if dij > dik + akj

dij ← dik + akj

“Relaxation” (recall Bellman-Ford lecture)

Dynamic Programming Approach
•  Consider the n × n matrix A = (aij), where:

§  aij=w(i,j), if (i, j) ∈ E, 0, if i=j, and +∞, otherwise.
•  and define:

§  dij
(m) =

•  Want: dij
(n-1)

•  dij
(0) = 0, if i = j, and +∞, if i ≠ j;

Claim: For m = 1, 2, …, n–1,
 dij

(m) = mink{dik
(m–1) + akj }.

weight of a shortest path from i to j that only uses
at most m edges

O(n4) - similar to n runs of Bellman-Ford

Another DP Approach
•  Consider the n × n matrix A = (aij), where:

§  aij=w(i,j), if (i, j) ∈ E, 0, if i=j, and +∞, otherwise.
•  and define:

§  dij
(m) =

•  Want: dij
(n-1)

•  dij
(0) = 0, if i = j, and +∞, if i ≠ j;

Claim: For m = 1, 2, …, n–1,
 dij

(m) = mink{dik
(m–1) + akj }.

weight of a shortest path from i to j that only uses
at most m edges

O(n4) - similar to n runs of Bellman-Ford

Another DP Approach
•  Consider the n × n matrix A = (aij), where:

§  aij=w(i,j), if (i, j) ∈ E, 0, if i=j, and +∞, otherwise.
•  and define:

§  dij
(m) =

•  Want: dij
(n)

•  dij
(0) = aij;

Claim: For m = 1, 2, …, n,
 dij

(m) = min{dij
(m-1),dim

(m–1) +dmj
(m–1)}.

weight of a shortest path from i to j that only uses
intermediate vertices from set {1,…,m}

Proof of Claim

m

i
j

only labels in {1,…,m-1}

only labels in {1,…,m-1}

 dij
(m) = min{dij

(m-1), dim
(m–1) +dmj

(m–1)}

Another DP Approach
•  Consider the n × n matrix A = (aij), where:

§  aij=w(i,j), if (i, j) ∈ E, 0, if i=j, and +∞, otherwise.
•  and define:

§  dij
(m) =

•  Want: dij
(n)

•  dij
(0) = aij;

Claim: For m = 1, 2, …, n,
 dij

(m) = min{dij
(m-1),dim

(m–1) +dmj
(m–1)}.

weight of a shortest path from i to j that only uses
intermediate vertices from set {1,…,m}

O(n3) running time (Floyd-Warshall)

Lecture overview

– review of last time
• key aspects of Dynamic Programming (DP)
• all-pairs shortest paths as a DP

– another DP for all-pairs shortest paths
– longest common subsequence

Longest Common Subsequence

•  given two sequences x[1..m] and y[1..n], find a
longest subsequence LCS(x,y) common to both:

 x: A B C B D A B

 y: B D C A B A

•  denote the length of a sequence s by |s|
•  let us first try to get |LCS(x,y)|

Applications of LCS

•  Tons in bioinformatics, e.g. long preserved
regions in genomes

•  file comparison, e.g. diff

Brute force solution

•  Given x[1..m] and y[1..n], how do we get
the |LCS(x,y)| ?

•  For every subsequence of x[1..m] , check if
it is a subsequence of y[1..n]

•  Analysis:
– 2m subsequences of x
– each check takes Ο(n) time ...
– (two finger algorithm)
– worst-case running time is Ο(n2m)

Using prefixes
•  consider prefixes of x and y

– x[1..i] ith prefix of x[1..m]
– y[1..j] jth prefix of y[1..n]

•  subproblem: define c[i,j] = |LCS(x[1..i],y[1..j])|

•  so c[m,n] = |LCS(x,y)|

•  recurrence?

1) x[1..i] and y[1..j] end with xi=yj

x1 x2 … xi-1 xi

I might as well match xi and yj and look for LCS of
x[1..i-1] and y[1..j-1].
So

 c(i, j) = c(i-1, j-1)+1, if xi=yj

where recall c[i,j] = |LCS(x[1..i],y[1..j])|

y1 y2 … yj-1 yj=xi

Example - use of property 1

x: B A N A N A

y: A T A N A

by inspection LCS of B A N and A T is A
so |LCS(x,y)| is 4

2) x[1..i] and y[1..j] end with xi ≠ yj

LCS of x[1..i] and y[1..j-1]

c(i, j)=max{c(i, j-1), c(i-1, j)}, if xi≠yj

LCS of x[1..i-1] and y[1..j]

x1 x2 … xi-1 xi

y1 y2 … yj-1 yj ≠ xi

x1 x2 … xi-1 xi

y1 y2 … yj-1 yj

x1 x2 … xi-1 x i

yj y1 y2 …yj-1 yj

A recurrence, summary
•  consider prefixes of x and y

– x[1..i] ith prefix of x[1..m]
– y[1..j] jth prefix of y[1..n]

•  define c[i,j] = |LCS(x[1..i],y[1..j])|
– so c[m,n] = |LCS(x,y)|

•  recurrence:

!

c[i, j] =
c[i "1, j "1] +1 if xi = y j

max{c[i "1, j],c[i, j "1]} otherwise

$
%

Solving LCS with Recursion

!

c[i, j] =
c[i "1, j "1] +1 if xi = y j

max{c[i "1, j],c[i, j "1]} otherwise

$
%

c[ABCB,BDC]

c[ABC,BDC] c[ABCB,BD]

c[AB,BD]+1 c[ABC,BD] c[ABCB,B]

 c[A,BD] c[AB,B] c[AB,BD] c[ABC,B] c[ABC,]+1

c[,BD]=0 c[A,B] c[A,]+1 c[AB,B] c[ABC,]=0

 c[,B]=0 c[A,]=0

…

…

Solving LCS with Recursion+Memoization

!

c[i, j] =
c[i "1, j "1] +1 if xi = y j

max{c[i "1, j],c[i, j "1]} otherwise

$
%

c[ABCB,BDC]

c[ABC,BDC] c[ABCB,BD]

c[AB,BD]+1 c[ABC,BD] c[ABCB,B]

 c[A,BD] c[AB,B] c[AB,BD] c[ABC,B] c[ABC,]+1

c[,BD]=0 c[A,B] c[A,]+1 c[AB,B] c[ABC,]=0

 c[,B]=0 c[A,]=0

…

…

!

c[i, j] =
c[i "1, j "1] +1 if xi = y j

max{c[i "1, j],c[i, j "1]} otherwise

$
%

memo = { }
c(i, j):

if (i, j) in memo: return memo[i, j]
else if i=0 OR j=0: return 0
else if xi=yj: f = c(i-1, j-1)+1
else f = max{c(i, j-1), c(i-1, j)}
memo[i, j]=f
return f

return c(n,m)

Solving LCS with Recursion+Memoization

•  and the running time is O(n×m)
!

c[i, j] =
c[i "1, j "1] +1 if xi = y j

max{c[i "1, j],c[i, j "1]} otherwise

$
%

Solving LCS with Recursion+Memoization

