6.006- Introduction to Algorithms

RRRRRRRRRRRRRR

Lecture 19

Prof. Constantinos Daskalakis

Lecture overview

—review of last lecture
* key aspects of Dynamic Programming (DP)
e all-pairs shortest paths as a DP

—a smarter DP for all-pairs shortest paths

— longest common subsequence

CLRS 15.3, 154, 25.1, 25.2

Dynamic Programming Definition

e DP = Recursion + Memoization

» Typically, but not always, applied to optimization
problems — so far: Fibonacci, Crazy eights, SPPs

 DP works when:

— the solution can be produced by combining solutions
to subproblems; e.g. F =F,_+F, ,

— the solution to each subproblem can be produced by
combining solutions to sub-subproblems, etc;

Fn—] :Fn-2+Fn-3 Fn—ZZFn-3+Fn-4
moreover 1t’s efficient when....

— the total number of subproblems arising recursively
1s polynomial. Fp, Fp..., F,

Dynamic Programming Definition

e DP = Recursion + Memoization

» Typically, but not always, applied to optimization
problems — so far: Fibonacci, Crazy eights, SPPs

 DP works when:

D
Optimal substructure
The solution to a problem can be obtained by
solutions to subproblems. F=F F o
(D =7 =z m=o ez =0 re—r 1
Overlapping Subproblems

A recursive solution contains a “small” number of

distinct subproblems (repeated many times)
F,F,,...,F

n)

All-pairs shortest paths

* Input: Directed graph G = (V, E), where V= {1,..., n},
with edge-weight function w : £ — R.

* Output: An »n < n matrix of shortest-path lengths o(z, /)
foralli,; € V.

Assumption: No negative-weight cycles

Dynamic Programming Approach

* Consider the 7 x n matrix 4 = (a,), where:
— a,;=w(i,)), 1f (i, j) € E, 0, 1f 1=, and +0, otherwise.

e and deﬁne
_ d (m) = weight of a shortest path from 7 to ; that
uses at most 7 edges

» Want: d, (")
» d,0=0,ifi=/,and +oo, if i # ;

Claim: Form =1, 2, ..., n—1,
d; ™= min,{d; "V +a,; }.

Proof of Claim

ks

<m-1 edges

s ~Z
edg s

fork<— 1ton
ifdl.j>dik+akj

dl-j<—dik+akj

5/77\] o
dg@s

“Relaxation” (recall Bellman-Ford lecture)

Dynamic Programming Approach

* Consider the x n matrix 4 = (a,), where:
. al.j:w(z', 1), 1 (i,j) € E, 0, 1f 1=, and +co, otherwise.

* and define:
= d, = weilght of a shortest path from 7 to ; that only uses

at most m edges

» Want: d ("
* d,0=0,if i =/, and +oo, if i # J;

Claim: Form=1,2, ..., n—1,
d; = min,{d; " +a, }.

O(n*) - similar to » runs of Bellman-Ford

Another DP Approach

* Consider the 7 x n matrix 4 = (a,), where:
. aijzw(z’, 1), 1 (i,j) € E, 0, 1f 1=, and +co, otherwise.
e and define:

= d, = welg ortest I to j that only uses
at mo cS

» Want: d ("
« d,0=0,ifi=},and +oo, if i # J;

Claim: Form=1,2, ..., n—1,
d; = min,{d; " +a, }.

O(n*) - similar to » runs of Bellman-Ford

Another DP Approach

* Consider the 7 x n matrix 4 = (a,), where:
. aijzw(z’, 1), 1 (i,j) € E, 0, 1f 1=, and +co, otherwise.

* and define:
= d, = weilght of a shortest path from 7 to ; that only uses

intermediate vertices from set {1,...,72}

* Want: d,"
° dU(O) — ay,

Claim: Form =1, 2, ..., n,
d,™ = min{d,™D,d,, D +d,, "D},

Proof of Claim

only labels in {1,...,m-1}

d, ™= min{d, "D, d,, D +d,, ("D}

Another DP Approach

* Consider the x n matrix 4 = (a,), where:
. aijzw(z', 1), 1 (i,j) € E, 0, 1f 1=, and +co, otherwise.

* and define:
= d, = weilght of a shortest path from 7 to ; that only uses

intermediate vertices from set {1,...,72}

e Want: dij(")
® dl](O) — al]’

Claim: Form =1, 2, ..., n,
d,™ = min{d,™D,d,, ™ +d,, -},

O(»?) running time (Floyd-Warshall)

Lecture overview

—review of last time
* key aspects of Dynamic Programming (DP)
e all-pairs shortest paths as a DP
—another DP for all-pairs shortest paths
—longest common subsequence

Longest Common Subsequence

* given two sequences X[1..m] and y[1..n], find a
longest subsequence LCS(x,y) common to both:

) A/BC/'yy
7 B D C A B A

 denote the length of a sequence s by |[s]
* let us first try to get [LCS(X,y)|

Applications of LCS

» Tons 1n bioinformatics, e.g. long preserved
regions 1n genomes

» file comparison, e.g. diff

original:

Vo NNOL e WN -

NN NNNRRSR B S B B B & &
B W N HOWVWOMNOU D WNKMO

This part of the
document has stayed the
same from version to
version. It shouldn't
be shown if it doesn't
change. Otherwise, that
would not be helping to
compress the size of the
changes.

This paragraph contains
text that is outdated.

It will be deleted in th¢{
near future.

It is important to spell
check this dokument. On
the other hand, a
misspelled word isn't
the end of the world.
Nothing in the rest of
this paragraph needs to
be changed. Things can
be added after it.

0al,6

This is an important
notice! It should
therefore be located at
the beginning of this
document!

ld4cld
changes.

This paragraph contains
text that is outdated.

AANAAAAADOKV VVVVY

near future.

> compress anything.
17¢17

< check this dokument. On

> check this document. On
24a25,28

>

> This paragraph contains
> important new additions
> to this document.

compress the size of the

It will be deleted in the

WO~ U W=

NNNNNNNNERRBRB R[S B |9 3 $2
NV WNEFEFOWVWONOUL R WN RO

N
@

This is an important
notice! It should
therefore be located at
the beginning of this
document!

This part of the
document has stayed the
same from version to
version. It shouldn't
be shown if it doesn't
change. Otherwise, that
would not be helping to
compress anything.

It is important to spell
check this document. On
the other hand, a
misspelled word isn't
the end of the world.
Nothing in the rest of
this paragraph needs to
be changed. Things can
be added after it.

This paragraph contains
important new additions
to this document.

Brute force solution

* Given x[1..m] and y[1..n], how do we get
the |[LCS(x,y)| ?

* For every subsequence of x[1..m] , check if
it 1s a subsequence of y[1..n]

* Analysis:
— 2™ subsequences of x
— each check takes O(n) time ...
— (two finger algorithm)
— worst-case running time 1s O(n2")

Using prefixes

 consider prefixes of x and y

—x[1..7] 1th prefix of x[1..m]

—vy[1..j] jth prefix of y[1..n]

 subproblem: define c[i,j] = |[LCS(X[1..i],y[1.j])]

* 5o c[m,n] = [LCS(x.y)|

* recurrence?

1) x[1..i] and y[1.,/] end with x=y;

‘X1 Xy eeo Xi-l‘ Xi‘

iy, - yj—l‘yj=xi

[might as well match x; and y; and look for LCS of
x[1..i-1] and y[1..j-1].
So

c(i, j) = c(i-1, J-1)+1, if x~y;

where recall c[i,j] = |LCS(x[1..7],y[1./])]

Example - use of property 1

by mnspection LCSof BANand A Ti1s A
so |[LCS(x,y)| 1s 4

2) x|1..7] and y[1.y] end with x; =y

iy ... yj—l‘ Y= X;

e

‘xl Xy oee Xiq xi‘ X1 X, "'Xi-lx‘
‘Y1Y2 Yj-1bd m)ﬁyZ ym

LCS of x[1..7] and y[1..7-1] LCS of x[1..i-1] and y[1..j]

c(i,j)=max{c(i,j—1), C(i'laj)}a if Xﬁﬁyj

A recurrence, summary

 consider prefixes of x and y
—x[1..7] 1th prefix of x[1..m]

—vy[1..j] jth prefix of y[1..n]

 define c[i,j] = |[LCS(x[1..i],y[1.j])]
—so ¢[m,n] = |LCS(x,y)

* recurrence:

cli-1,j-1]+1 ifx, =y,

max{cli -1,j],c[i,j —1]} otherwise

cli,jl =

Solving LCS with Recursion

[eli-1,j-1]+1 ifx, =y,
cli, jl=+ o .
max{cli-1,j],cli, —1]} otherwise
c[ABCB,BDC
¢[ABC,BDC] ¢[ABCB,BD]
c[AB,BD]+1 c[ABC,BD] c[ABCB,B]
/N /N |
c[A,BD] ¢[AB,B] c[AB,BD] c[ABC,B] c[ABC,]+1
/ | ' /N
c[,BD]=0

c[A,B] c[A,]+1 : c[AB,B] c[ABC,]=0

Solving LCS with Recursion+Memoization

cli-1,j-1]+1 ifx, =y,
cli,j1=+

max{cli-1,j]cli, '—1]} otherwise
c[ABCB,BDC

TN

c[ABC,BDC] c[ABCB,BD]

\ TN

c[AB,B ¢[ABC,BD] c[ABCB,B]

/ /N |

¢([ABD] ¢[AB.B] TABRD] ¢[ABC,B] RE 141
¢[.BDI=0 c[A.B] &1 (__ e A c[ABC{

Solving LCS with Recursion+Memoization

cli-1,j-1]+1 ifx, =y,
C[laj] =9 : : A :
max{cli-1j]cli,j-1]} otherwise
memo = { }
c(i,)):

if (i, /) iIn memo: return memoli, j]
else if i=0 OR ;j=0: return 0

else it x~y;: t = c(i-1, j-1)+1

else f =max{c(i, j-1), c(i-1,))}
memoli, j]=f

return

return c(n,m)

Solving LCS with Recursion+Memoization

cli-1,j-1]+1 ifx, =y,
cli,jl =1

max{cli-1j]cli,j-1]} otherwise

 and the running time 1s O(n xXm)

