6.006- Introduction to
Algortthms

HHHHHHHHHHHHHHH
EEEEEEEEEEEEEEEEE

RRRRRRRRRRRRRR

Lecture 18

Prof. Constantinos Daskalakis
CLRS 15

Menu

* New technique: Dynamic Programming

* Computing Fibonacci numbers — Warmup
= “Definition” of DP
* Crazy Eights Puzzle

Fibonacci Numbers

* Fibonacci sequence:
* F=0, F=1
" b=kt
* SoF=0, F =1, F=1,F;=2,F,=3, F=5, F =8, F=13,...
* Interesting fact: F,/F, ,— ¢ (the golden ratio)

* This 1s why 1f something looks beautiful in nature,
chances are that it involves two consecutive Fibonacci
numbers...

Clockwise Spirals: 34 Counter-clockwise Spirals: 55

34 and 55 are consecutive numbers in Fibonacci sequence...

Fibonacci Numbers

* Fibonacci sequence:
* F,=0,F=1
" F=F, *F,.,
» So F,=0, F,=1, F,=1, F,=2, F,=3, F.=5, F =8, F.=13,...
* Interesting fact: F,/F, ,— ¢ (the golden ratio)
* How fast does F, grow ?
" F=F,+F,,>2F, , =F=2%"
* How quickly can we compute F,?
(ttme measured 1n arithmetic operations)

Fn=Fn-1+Fn-2

* Algorithm I: recursion
naive fibo(n):
1f n=0: return 0
else 1f n=1: return 1

else:
return naive fibo(n-1) + naive fibo(n-2)

» Time ? T(n)=T(n-1)+T(n-2) = O(F,)
 Better algorithm ?

Fn=Fn-1+Fn-2

* Algorithm II: memoization
memo = { }

fibo(i):

if 7 in memo: return memo|i]

else 1f i=0: return 0
else if i=1: return 1

else:

f= fibo(i-1) + fibo(i-2)
memo|i]=f
return f

return fibo(n)

* Time? O(n)

$

- in the whole recursive execution, [
will only go beyond this point, n times

(since every time I do this, I fill
in another slot in memo[])

- hence, all other calls to fibo() act as
reading an entry of an array

Dynamic Programming Definition

e DP = Recursion + Memoization
* DP works when:

» the solution can be produced by combining solutions of
subproblems; F =F +F

= the solution of each subproblem can be produced by

combining solutions of sub-subproblems, etc;

morcover.... Fn—] :Fn-2+Fn-3 Fn-ZZFn-3+Fn-4

» the total number of subproblems arising recursively 1s

polynomual. F.F,. .F

Dynamic Programming Definition

e DP = Recursion + Memoization
e DP works when:

Optimal substructure
The solution to a problem can be obtained by

solutions to subproblems. F=F +F ,

morecover.... Fn—l :Fn-2+Fn-3 Fn—ZZFn—3+Fn—4

Overlapping Subproblems
A recursive solution contains a ‘“small” number of

distinct subproblems (repeated many times)
F,,F,....,F,

Crazy 8s

Input: a sequence of cards c[0]...c[n-1].
E.g., 7% 79 K& K& 8Y
Goal: find the longest “trick subsequence” c[i,]...c[7,],
where i, <1, <...<i,,
For 1t to be a trick subsequence, 1t must be that:
V j, cli;] and c[i;,, | “match” i.e.
» they either have the same rank,
" or the same suit
= or one of them 1s an &
" in this case, we write: c[/] ~ c[/,.]
E.g., 7d K& K& 8% 1s the longest such subsequence
in the above example

Crazy 8s via graph search

Longest trick starting at c[1]?

Idea: BFS was good for shortest paths in unweighted graphs. Let’s
try 1t for finding a longest path in the graph of matching cards.

Do BFS starting at ¢[1], compute BFS tree, and look at deepest

level.
mhing cli,]

and are after c[7,]

cards matching c[1]
and are after c[1]
Worst case BFS tree size?

C.g. T 109 Tde 2 S /o Do SRV Tdo 2o S b Do S
size >27"

DP Approach

Identify subproblem:

Let trick(7) be the length of the longest trick
subsequence that starts at card c|/]

Question: How can I relate value of trick(7) to the
values of trick(i+1),...,trick(n)?

Recursive formula:
trick(?) = 1+ max;.; .1 matches e[T11CK()
Maximum trick length:
max; trick(7)

Implementations

Recursive

* memo = { }
. trick(i):
" 1f / iIn memo: return memol]
" clse if i=n-1: return 1
" clse
*f= 14max;.; ;1 matches c[i
* memol[i] :=f

| trick(j)

* return f
e call trick(0), trick(1),...,trick(n-1)
* return maximum value in memo

Implementations (cont.)

Iterative

memo = { }
for i=n-1 downto O

memo|i]= 1+max,

7>1, ¢[j] matches c[i] memo[/]

return maximum value i1n memo

Runtime: O(n?)

Dynamic Programming

e DP = Recursion + Memoization

e DP works when:

Optimal substructure
An solution to a problem can be obtained by
solutions to subproblems.

tI'iCk(i) = 1+ InaX]'>i, c[7] matches c[i] tI'iCk(f)

moreover.. ..
Overlapping Subproblems

A recursive solution contains a “small” number of
distinct subproblems (repeated many times)

trick(0), trick(1),..., trick(n-1)

Menu

* New technique: Dynamic Programming
* Computing Fibonacci numbers — Warmup
" “Definition” of DP
* Crazy Eights Puzzle
* Next Time: all-pairs shortest paths

All-pairs shortest paths

* Input: Directed graph G = (V, E), where |V | = n,
with edge-weight function w : £ — R.

* Qutput: n X n matrix of shortest-path lengths o(:,)
foralli,j € V.

Assumption: No negative-weight cycles

Dynamic Programming Approach

* Consider the x n matrix 4 = (a,), where:

. al-jzw(i,j), if (i, j) € E, 0, 1f 1=, and +oo, otherwise.
* and define:

" d, M= weight of a shortest path from 7 to ; that

uses at most 7 edges
* Want: d (")

Claim: We have
d,©=0,if i = j, and +oo, if i # J;
and form=1,2, ..., n—1,
d; = min, {d; "D +a, }.

Proof of Claim

ks

<m-1 edges

s ~Z
edg s

fork<— 1ton
ifdl.j>dik+akj

dl-j<—dik+akj

5/77\] o
dg@s

“Relaxation” (recall Bellman-Ford lecture)

Dynamic Programming Approach
* Consider the 7 x n matrix A = (a;), where:

" a,=w(i)), if (i, j) € E, 0, 1f 1=, and +oo, otherwise.
* and define:

= d,(m= weight of a shortest path from 7 to ; that
uses at most 72 edges

* Want: d, /)
Claim: We have
d,©=0,ifi=/, and +oo, if i # ;
and form=1,2, ..., n—1,
d, "= min, {d; "V +a, }.

Time to compute d,"? O(n*) - similar to » runs of Bellman-Ford

Something less extravagant? Next Lecture

Inventor of Fibonacci Sequence?

Is 1t Fibonacci1?

where Fibonacci: Italian Mathematician
(1170-1250)

A: No. Fibonacci just introduced it to Europe.

Sequence was known to Indian
Mathematicians since the 6 century.

So 1s 1t some Indian mathematician?
That’s more of a philosophical question.

Same as question: Who invented the prime
numbers some Greek, Egyptian or Babylonian?

After all, these numbers play a role in natural
systems that existed before humans...

