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Lecture Overview 

Graphs, Graph Representation, and 
Graph Search 



Graphs 
•  Useful object in Combinatorics  
•  G=(V,E) 
•  V a set of vertices 

–  usually number denoted by n 
•  E ⊆ V × V a set of edges (pairs of vertices) 

–  usually number denoted by m 
–  note m ≤ n(n-1) = O(n2) 

•  Two Flavors: 
–  order of vertices on the edges matters: directed graphs 
–  ignore order: undirected graphs 

• Then at most n(n-1)/2 possible edges 



Examples 

•  Undirected 
•  V={a,b,c,d} 
•  E={{a,b}, {a,c}, {b,c}, 

{b,d}, {c,d}} 

•  Directed 
•  V = {a,b,c} 
•  E = {(a,c), (a,b) (b,c), 

(c,b)}  
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Instances/Applications 
•  Web 

–  crawling  
–  ranking 

•  Social Network 
–  degrees of separation 

•  Computer Networks 
–  routing 
–  connectivity 

•  Game states 
–  solving Rubik’s cube, chess 



•  2 × 2 × 2 Rubik’s cube 
•  Start with a given 

configuration 
•  Moves are quarter 

turns of any face 
•  “Solve” by making 

each side one color 

Pocket Cube  
(aka Harvard Sophomores’ cube) 



Configuration Graph 

•  Imagine a graph that has: 
– One vertex for each state of cube 
– One edge for each move from a vertex 

• 6 faces to twist 
• 3 nontrivial ways to twist (1/4, 2/4, 3/4) 
• So, 18 edges out of each state 

•  Solve cube by finding a path (of moves) from 
initial state (vertex) to “solved” state 



Number of States 
•  One state per arrangement of cubelets and 

orientation of the cubelets: 
– 8 cubelets in 8 positions: so 8! arrangements 
– each cubelet has 3 orientations: 38 Possibilities 
– Total:  8! × 38= 264,539,320 vertices 

•  But divide out 24 orientations of whole cube 
•  And there are three separate connected components 

(twist one cube out of place 3 ways) 
•  Result: 3,674,160 states to search 



GeoGRAPHy 
•  Starting vertex 
•  6 vertices reachable by 

one 90° turn 
•  From those, 27 others 

by another 
•  And so on 

distance 90° 90° and 180° 
0 1 1 
1 6 9 
2 27 54 
3 120 321 
4 534 1847 
5 2,256 9,992 
6 8,969 50,136 
7 33,058 227,526 
8 114,149 870,072 
9 360,508 1,887,748 
10 930,588 623,800 
11 1,350,852 2,644 
12 782,536 
13 90,280 
14 276 

diameter 
(aka God’s number) 



Representation 

•  To solve graph problems, must examine graph 
•  So need to represent in computer 
•  Four representations with pros/cons 

– Adjacency lists (of neighbors of each vertex) 
–  Incidence lists (of edges from each vertex) 
– Adjacency matrix (of which pairs are adjacent) 
–  Implicit representation (as neighbor function) 



Adjacency List 

•  For each vertex v, list its neighbors (vertices to which 
it is connected by an edge) 
– Array A of || V ||  linked lists 
– For v∈V, list A[v] stores neighbors {u | (v,u) ∈ E} 
– Directed graph only stores outgoing neighbors 
– Undirected graph stores edge in two places 

•  In python, A[v] can be hash table 
–  v any hashable object 



Example 
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Incidence List 

•  For each vertex v, list its edges 
– Array A of || V ||  linked lists 
– For v∈V, list A[v] stores edges {e | e=(v,u) ∈ E} 
– Directed graph only stores outgoing edges 
– Undirected graph stores edge in two places 

•  In python, A[v] can be hash table 



(Object Oriented Variants) 

•  adjacency list: object for each vertex u 
–  u.neighbors is list of neighbors for u 

•  incidence list: object for each edge e 
–  u.edges = list of outgoing edges from u 
–  e object has endpoints e.head and e.tail 

•  can store additional info per vertex or edge 
without hashing 

e.a e.be



Adjacency Matrix 

•  assume V={1, …, n} 
•  n × n matrix A=(aij) 

– aij = 1 if (i,j) ∈ E 
– aij = 0 otherwise 

•  (store as, e.g., array of arrays) 



Example 

1 2 3 

0 1 1 1 

0 0 1 2 

0 1 0 3 

1 

2 3 



Graph Algebra 

•  can treat adjacency matrix as matrix 
•  e.g., A2 = #length-2 paths between vertices .. 
•  A∞ gives pagerank of vertices (after 

appropriately normalizing of A) 
•  undirected graph à symmetric matrix 
•  [eigenvalues carry information about the 

graph] 



Tradeoff: Space 

•  Assume vertices {1,…,n} 
•  Adjacency lists use one list node per edge 

– So space is Θ(n+ m log n) 
•  Adjacency matrix uses n2 entries 

– But each entry can be just one bit 
– So Θ(n2) bits 

•  Matrix better only for very dense graphs 
– m near n2 

–  (Google can’t use matrix) 



Tradeoff: Time 

•  Add edge 
–  both data structures are O(1) 

•  Check “is there an edge from u to v”? 
– matrix is O(1) 
–  adjacency list of u must be scanned 

•  Visit all neighbors of u (very common) 
–  adjacency list is Ο(neighbors) 
– matrix is Θ(n) 

•  Remove edge  
–  like find + add 



Implicit representation 

•  Don’t store graph at all 
•  Implement function Adj(u) that returns list 

of neighbors or edges of u 
•  Requires no space, use it as you need it 
•  And may be very efficient 
•  e.g., Rubik’s cube 



Searching Graph 

•  We want to get from current Rubik state to 
“solved” state 

•  How do we explore? 



Breadth First Search 
•  start with vertex v 
•  list all its neighbors (distance 1) 
•  then all their neighbors (distance 2) 
•  etc. 

•  algorithm starting at s: 
– define frontier F 
–  initially F={s}  
–  repeat F=all neighbors of vertices in F 
– until all vertices found 

. . .

frontier

s



Depth First Search 
•  Like exploring a maze 
•  From current vertex, move to another 
•  Until you get stuck 
•  Then backtrack till you find a new place to 

explore 

•  e.g “left-hand” rule 

s



Problem: Cycles 

•  What happens if unknowingly revisit a 
vertex? 

•  BFS: get wrong notion of distance 
•  DFS: go in circles 
•  Solution: mark vertices 

– BFS: if you’ve seen it before, ignore 
– DFS: if you’ve seen it before, back up 



Conclusion 

•  Graphs: fundamental data structure 
– Directed and undirected 

•  4 possible representations 
•  Basic methods of graph search 

•  Next time: 
– Formalize BFS and DFS 
– Runtime analysis 
– Applications 



Inventor of DFS? 

Daughter of Minos king of Crete 
And sister of… 



The Minotaur 



The Minotaur resided in a maze next to Minos’s palace. 
The best of the youth from around Greece was brought to 
the maze, and unable to navigate inside it got lost and 
tired, and eventually eaten by the Minotaur… 



Inventor of DFS fell in love with Theseus and 
explained the algorithm to him before he was thrown 
to the maze.. 



Theseus follows algorithm, finds the Minotaur... 



and... 



Theseus and Ariadne then sail happily to 
Athens.. 

The rest of the story is not uneventful though.. 


