
6.006- Introduction to
Algorithms

Lecture 7
Prof. Silvio Micali

Congratula*ons!	

Sit	
 down	
 	

Focus	
 	
 	
 	
 	
 	
 	
 	
 -­‐-­‐-­‐AKA	
 Relax	
 (outside	
 MIT)	
 	

Enjoy	
 	

Plan	
 for	
 Today:	
 	

3	
 new	
 Ideas,	
 2	
 of	
 which	
 GREAT!	

Vote	
 at	
 the	
 end…	

How	
 to	
 convey	
 these	

new	
 cool	
 iDEAS?	

Hashing!

VIA: DYNAMIC DICTIONARIES

Idea	
 1	

Dynamic Dictionaries

• 

too small è load high, operations slow
too large è high initialization cost, wasted space

Wanted: m=Θ(n) at all times

potentially more cache-misses

Solution: Resize
• 

(For	
 simplicity:	
 ignore	
 HashTime)	

When to resize?
• 

Amortized Analysis
• 

Deletions?
• 

Summary

•  Arbitrary sequence of insert/delete/find
•  O(1) amortized time per operation

Welcome	
 to:	
 	
 	
 	
 	
 	
 	
 	

On-­‐Line	
 Algorithms!	

Alg	

’	
 ’	
 ’	
 ’	
 ’	

Ignorance	
 vs.	
 Omniscience	

OPEN ADDRESSING

Idea	
 2	

U :	
 universe of all possible keys-huge set

h(k1)	

h(k3)	

h(k2)	
 =	
 h(k4)	

:	
 actual keys-small set, but not known when
designing data structure

K	

item3	

item1	

item2	
 item4	

K

U

Recall Chaining…

• 

Universe	
 of	
 keys	
 Probe	
 number	
 Bucket	

1	

2	

m-1

collision	

collision	

collision	

free	
 spot!	
 itemk

other	
 item	

other	
 item	

other	
 item	

Open Addressing (example)

Operations

Insert:
§  Probe till find empty bucket, put item there

Search:
§  Probe till find item (return with success)
§ Or find empty bucket (return with failure)

•  Because if item inserted, would use that empty bucket

Delete:
§  Probe till find item
§  Remove, leaving empty bucket

Problem with Deletion

Consider the following sequence:
§  Insert x
§  Insert y

•  suppose probe sequence for y passes x bucket
•  store y elsewhere

§ Delete x (leaving hole)
§  Search for y

•  Probe sequence hits x bucket
•  Bucket now empty
•  Conclude y not in table (else y would be there)

Solution for deletion

•  When delete x
§  Leave it in bucket, but mark it deleted

•  Future search for x sees x is deleted
§  Returns “x not found”

•  “Insert z” probes may hit x bucket
§  Since x is deleted, overwrite with z
 (So keeping deleted items doesn’t waste space)

What probe sequence?

Linear probing

• 

Ø	

1	

m-1

cluster

if	
 h(k,1)	
 is	
 any	
 of	

these,	
 the	
 cluster	

will	
 get	
 bigger	

i.e. the bigger the cluster is, the
more likely it is to grow larger,
since there are more opportunities
to make it larger…

•  E.g.,	
 0.1	
 <	
 α	
 <	
 0.99,	
 cluster	
 size	
 Θ(log	
 n)	

•  Wrecks	
 our	
 constant-­‐*me	
 opera*ons	

Double Hashing
• 

E.g., m=2r g(k) odd

Performance of Open Addressing

•  Operation time is length of probe sequence
•  How long is it?
•  In general, hard to answer.
•  If h(k,i) as before, then we “can” make the

 Uniform Hashing Assumption (UHA):
§  Probe sequence= h(k,1) h(k,2) … h(k,m) is a

uniform random permutation of [1..m]
Note: this is different to the simple uniform
hashing assumption (SUHA))

Analysis under UHA

Suppose:
§  a size-m table contains n items
§ we are using open addressing
§ we are about to insert new item

Q: Probability first prob successful?

Why?	
 From	
 UHA,	
 probe	
 sequence	
 random	
 permutaKon	

Hence,	
 first	
 posiKon	
 probed	
 randomly	

m-­‐n	
 out	
 of	
 the	
 m	
 slots	
 are	
 unoccupied	

Analysis (II)
Q: If first probe unsuccessful, probability second
prob successful?

Why?
•  From UHA, probe sequence random permutation

m− n

m− 1 ≥ m− n

m
= p

• Hence, first probed slot is random; the second probed
slot is random among the remaining slots, etc.
• Since first probe unsuccessful, it probed an occupied slot
• Hence, the second probe is choosing uniformly from m-1
slots, among which m-n are still clean

Analysis (III)

•  If first two probes unsuccessful, probability
third prob successful?

m− n

m− 2
≥ m− n

m
= p

•  …

è every trial succeeds with probability ≥p

expected number of probes till success? ≤ 1
p

=
1

1− α

e.g. if α=90%, expected number of probes is at most 10

Open Addressing vs. Chaining

•  Open addressing skips linked lists
§  Saves space (of list pointers)
§  Better locality of reference

•  Array concentrated in m space
•  So fewer main-memory accesses bring it to cache
•  Linked list can wander all over memory

•  Open addressing sensitive to load α	

§ As α à 1, access time shoots up

1
1− α

1
1− α

What	
 IF?	

ADVANCED HASHING ?
covered	
 in	
 recita*on	
 (for	
 those	
 who	
 care)	

VIA UNIVERSAL HASHING

Idea	
 3	

Goal

• 

DEF: Universal Hash Family
• 

• 
Proof:	

Welcome to Probabilism!

Crucial because:

1. The Adversary wants to harm you

2. To harm you he must know what you’ll be doing

3. He cannot know if you yourself do not know!

And

4. SM’s Law: All sufficient complex systems are adversarial!

Cryptography

Adversary	
 picks	
 the	
 sequence	
 of	
 keys	
 you	
 must	
 hash	

Adversary	
 learns	
 when	
 he	
 has	
 caused	
 a	
 collision	

And	
 yet…	

“Cryptographers	
 never	
 sleep”	

SM

Credits
Goldenstateofmind.com	

SMgraphics.home	

Vote!

Next Week: Sorting

Teenagegirlsvslife.blogspot.com	

Better? Perfect Hashing!

•  Hash table with zero collisions
•  So don’t need linked lists
•  Can’t guarantee for arbitrary keys
•  But if you know keys in advance, can quickly

find a hash function that works
§  E.g. for a fixed dictionary

Summary

•  Hashing maps a large universe to a small range
•  But avoids collisions
•  Result:

§  Fast dictionary data structure
§  Fingerprints to save comparison time

•  Next week: sorting

NOT COVERED IN CLASS

Fingerprinting

•  File backup service
§ Major cost in time and money: bandwidth

•  How decide whether a file has changed?
§ And thus needs new backup

•  Send whole file?
§  Too expensive

•  Send hash of file (treating file as big number)
§ Only send file if hash differs
§ Might make a mistake, if hash same

What signature?
•  File x and backup y, length n bits
•  Treat as n-bit numbers
•  Pick random prime number p in [2..n]
•  Hash/compare x (mod p) vs. y (mod p)

§  Send log n bits
•  False negative if

§  x and y different
§  but x (mod p) = y (mod p)
§  i.e. (x-y) (mod p) = 0
§  i.e. p is a factor of x-y

What are the odds?

•  How many prime factors does x-y have?
§  It’s an n-bit number
§  It’s the produce of its factors p1 .. pk
§  Each pi ≥ 2
§  So (x-y) = p1p2..pk ≥ 2k

§  So k ≤ log2 n prime factors
•  How many primes in range [1..n] ?

§  Prime number theorem says about n/ln n
§  So, Pr[pick wrong factor] = (log n)/(n/ log n)
§  For better safety, pick bigger prime

Randomized Algorithms

•  Hashing/Fingerprinting make random choices
•  Then you prove they probably work
•  Prevent adversary from giving you a bad input
•  Lot of applications in algorithms design

§  Take 6.856 some day

Another Approach

•  Algorithm
§ Keep m a power of 2 (for faster computation)
§ Grow (double m) when n ≥ m
§  Shrink (halve m) when n ≤ m/4

•  Analysis
§  Just after rebuild: n=m/2
§ Next rebuild a grow à at least m/2 more inserts

•  Amortized cost O(2m / (m/2)) = O(1)
§ Next rebuild a shrink à at least m/4 more deletes

•  Amortized cost O(m/2 / (m/4)) = O(1)

