6.006- Introduction to
Algortthms

HHHHHHHHHHHHHHH
EEEEEEEEEEEEEEEEE

RRRRRRRRRRRRRR

Lecture 7
Prof. Silvio Micali

Plan for Today:
3 new ldeas, 2 of which GREAT!

Congratulations!

Sit down
Focus
Enjoy

Vote at the end...

How to convey these
new cool iDEAS?

ldea 1

VIA: DYNAMIC DICTIONARIES

Dynamic Dictionaries

So far: Insert n items 1n m-size table

Now: arbitrary sequence of insert, delete, find n?
How big a table should we set up?

What 1f we guess wrong?

too small =» load high, operations slow
too large =@ high initialization cost, wasted space

Wanted: m=0(n) at all times

potentially more cache-misses

Solution: Resize

o Start with small constant m

* When table too full, make it bigger

* When table too empty, make 1t smaller
How?

Build a whole new hash table and reinsert items

(Recompute all hashes, Recreate new linked lists)

Time to rebuild: NewSize + #hashes X HashTime

(For simplicity: ignore HashTime)

When to resize?

Approach 1: whenever n > m, m « m+l

Sequence of n inserts:

* Each insert increases n past m causing rebuild
= Total work: ®(1 +2 + ... + n) = O(n?)

Approach 2: Whenever n > 2m
= Costly inserts: insert 2! for all i:
These cost:0(1 + 2 + 4 + ... + n) =0(n)
= All other inserts take O (1) time — why?

* Inserting n items takes O(n) time
= Keeps m a power of 2

Amortized Analysis

If a sequence of n operations takes time T, then
each operation has amortized cost T /n

Some ops are very slow: ©(n) for insertion that
causes last resize

But fast amortized cost per operation: O (1)

Often only care about total runtime, so low
amortized time 1s great

Deletions?

* Rebuild table to new size when n < m? No: O(n?)
* Rebuild when n < %

Arbitrary Insertions + Deletions?
Suppose “just rebuilt”: m =n

= Next rebuild a “grow” = at least m more inserts
before growing table

Amortized insert cost O(2m / m)) = O(1)

= Next rebuild a “shrink” = at least m/2 more deletes
before shrinking

Amortized delete cost O(m/2 / (m/2)) = O(1)

Summary

* Arbitrary sequence of insert/delete/find
* O(1) amortized time per operation

Welcome to:
On-Line Algorithms!

>

Uty
v
I Alg I
-:'Sz /4 /4 4 V4 4

lgnorance vs. Omniscience

|dea 2

OPEN ADDRESSING

Recall Chaining...

h(k1)

iteml

h(k3)

item3

U : universe of all possible keys-huge set

>
h(k2) = h(k4)

item2

itemd

K : actual keys-small set, but not known when

designing data structure

Pifferent technique for dealing with collisions:

No linked lists: 1f bucket occupied, find other
bucket (need m>n)

* For insert: probe a sequence of buckets until
find empty one!
* h specifies probe sequence for key x

= [deally, h(x) sequence “Visits all buckets”
» Technically, h: U X [1..m]

" \\

Universe of keys Probe number Bucket

Open Addressing (example)

other item

other item

item,

other item

2
h(k,3) collision

h(k,1) collision

h(k4) free spot!

h(k,2) collision

m-1

Operations

Insert:
* Probe till find empty bucket, put item there

Search:
» Probe till find item (return with success)
* Or find empty bucket (return with failure)

* Because if item inserted, would use that empty bucket

Delete:
= Probe till find item

gﬁ’g‘:ﬂ ucket

" Remd

Problem with Deletion

Consider the following sequence:
= Insert x

= Inserty
* suppose probe sequence for y passes x bucket
* store y elsewhere

» Delete x (leaving hole)
* Search fory

* Probe sequence hits x bucket
* Bucket now empty

* Conclude y not in table (else y would be there)

Solution for deletion

e When delete x
= Leave it in bucket, but mark it deleted ,W\ 4‘

* Future search for x sees x 1s deleted

= Returns “x not found”

* “Insert z” probes may hit x bucket
= Since x 1s deleted, overwrite with z

(So keeping deleted 1tems doesn’t waste space)

What probe sequence?

Linear probing

. h(k,1) = h’(k) + 1 for ordinary hash h’
Problem: creates “clusters”,

1.e. sequences of full buckets
= exactly like parking
* Big clusters are hit by lots of new items
* They get put at end of cluster

* Big cluster gets bigger: “rich get richer” phenomenon

= S

if h(k,1) is any of
these, the cluster -
will get bigger

cluster

i.e. the bigger the cluster is, the

more likely it is to grow larger,
since there are more opportunities

to make it larger...

m-1

e E.g.,0.1<0<0.99, cluster size O(log n)
* Wrecks our constant-time operations

Double Hashing

¢ Two ordinary hash functions f(k), g(k)

* Probe sequence h(k,1) = f(k) + 1-g(k) mod m

» If g(k) always relatively prime tom, E.g, m=2 g(k) odd
Then probe sequence for k can hit all buckets

Proof: The same bucket 1s hit twice if for some 1,;:
f(k) +1-g(k) = f(k) + j-g(k) mod m
=2 1-g(k) =j-g(k) (mod m)
= (i) g(k) = 0 (mod m)
- m and g(k) not relatively prime
(otherwise m should divide 1-j, which is not possible for 1, j<m)

Performance of Open Addressing

* Operation time 1s length of probe sequence
 How long 1s 1t?

* In general, hard to answer.

* If h(k,1) as before, then we “can” make the

Uniform Hashing Assumption (UHA):
* Probe sequence= h(k,1) h(k,2) ... h(k,m)1s a
uniform random permutation of [1..m]

Note: this 1s different to the simple uniform
hashing assumption (SUHA))

Analysis under UHA

Suppose:
" a size-m table contains n items
" we are using open addressing

® we are about to 1insert new item

Q: Probability first prob successful?

m—n
empty bucketsy __ A
PTOb(all buckets) m =D

Why? From UHA, probe sequence random permutation
Hence, first position probed randomly
m-n out of the m slots are unoccupied

Analysis (1I)

Q: If first probe unsuccessful, probability second
prob successful?

m —n >m—n
m—1 — m — P

Why?
* From UHA, probe sequence random permutation
*Hence, first probed slot is random; the second probed
slot 1s random among the remaining slots, etc.
*Since first probe unsuccessful, it probed an occupied slot

*Hence, the second probe 1s choosing uniformly from m-1
slots, among which m-n are still clean

Analysis (11I)

* If first two probes unsuccessful, probability
third prob successful?

m—n m—n
>

m-—2_ m — P

=> every trial succeeds with probability >p

. 1 1
expected number of probes till success? < — = 1
P —

e.g. 1if a=90%, expected number of probes 1s at most 10

Open Addressing vs. Chaining

* Open addressing skips linked lists
= Saves space (of list pointers)

= Better locality of reference
* Array concentrated in m space
* So fewer main-memory accesses bring it to cache
* Linked list can wander all over memory

* Open addressing sensitive to load o

* As a =2 1, access time shoots up

166

96

88

78

66

56

48

36

20

18

What IF?

ADVANCED HASHING ?

covered in recitation (for those who care)

|dea 3

VIA UNIVERSAL HASHING

Goal

«Get rid of simple uniform hashing assumption
* Create a family of hash functions H
* When you start, pick at random h € H

* Unless you are unlucky, few collisions
~Adversary doesn’t know what hash you will use
So cannot pick keys that collide too much

DEF: Universal Hash Family

o..1s a family (set) of hash functions such that, for any keys x
and vy, if you choose a random h from the family,
Prlh(x) = h(y)] = 1/m

Thm: UHF produces few expected collisions
Proof:

E[collisions with x| = E[number of ys.t.h(x) = h(y)]
= E[2) 1h)=ney)]
= Zy E[lh(x)zh(y)] (linearity of E)
= 2y Pr[h(x) = h(y)]

= n/m

THM: 3Universal Hashing Families!
Prootf:

Suppose table size= p prime

Define h,,(x) = a-x+ b (mod p)

* Ifaand b are random elements in {0, ...,p — 1}, then h (x) is a UHF
* mod p 1s a field, so you can divide/substract as well

* Pick two keys x and y. What is the probability (over the choice of a, b)
that the hashes of x and y collide?

* Mustbe a-x+b = q(modp)anda-y+b = q (modp), for
some q in {0, ...,p — 1}
* For fixed g, this 1s a linear system in a, b
* Two variables, two equations, Unique solution: that is,
unique h,, makes this happen
 Probability of choosing this h, is 1/p?
* Collision if h,(x) = hy(y) = g for some q

* There are p possible values for g, hence overall probability of collision=
p/p* = 1/p = 1/m

Welcome to Probabilism!

Crucial because:
1. The Adversary wants to harm you @ /‘ \}

2. To harm you he must know what you'll be doing -

3. He cannot know if you yourself do not know!

And

4. SM’s Law: All sufficient complex systems are adversarial!

Cryptography

Secret writing —» Adversarial Computation

You pick A in a hash family H (but not which h you picked)
Adversary knows H (but not which h € H you picked!)
Adversary picks the sequence of keys you must hash
Adversary learns when he has caused a collision
Adversary learns the values h(k;) , h(k,) , .. , h(k;)
Adversary can choose h(k;, 1) adaptively!

And yet...

“Cryptographers never sleep”

SM

Happy 6:006 = Happy 6.875!

Credits

Teenagegirlsvslife.blogspot.com
Goldenstateofmind.com

SMgraphics.home

Vote!

Next Week: Sorting

Better? Perfect Hashing!

Hash table with zero collisions
So don’t need linked lists
Can’t guarantee for arbitrary keys

But if you know keys 1n advance, can quickly
find a hash function that works

» E.g. for a fixed dictionary

Summary

Hashing maps a large universe to a small range
But avoids collisions
Result:

» Fast dictionary data structure

" Fingerprints to save comparison time

Next week: sorting

NOT COVERED IN CLASS

Fingerprinting

File backup service

" Major cost in time and money: bandwidth

How decide whether a file has changed?

* And thus needs new backup

Send whole file?

" Too expensive

Send hash of file (treating file as big number)
* Only send file 1f hash differs
* Might make a mistake, 1f hash same

What signature?

File x and backup vy, length n bits
Treat as n-bit numbers
Pick random prime number p in [2..n]

Hash/compare x (mod p) vs. y (mod p)
* Send log n bits

False negative if
* x and y different
" but x (mod p) =y (mod p)
" 1.e. (X-y) (mod p)=0
" j.e. p1s a factor of x-y

What are the odds?

* How many prime factors does x-y have?
" [t’s an n-bit number
= [t’s the produce of its factors p, .. p;
= Bachp,>2
" So (X-y) = piP,.-py = 2"
= So k <log, n prime factors
* How many primes in range [1..n] ?
* Prime number theorem says about n/ln n
» So, Pr[pick wrong factor] = (log n)/(n/ log n)
» For better safety, pick bigger prime

Randomized Algorithms

Hashing/Fingerprinting make random choices
Then you prove they probably work
Prevent adversary from giving you a bad input

Lot of applications 1n algorithms design
* Take 6.856 some day

Another Approach

* Algorithm
= Keep m a power of 2 (for faster computation)

* Grow (double m) when n>m
* Shrink (halve m) when n < m/4

* Analysis
= Just after rebuild: n=m/2

» Next rebuild a grow = at least m/2 more inserts
* Amortized cost O(2m / (m/2)) = O(1)

= Next rebuild a shrink = at least m/4 more deletes
* Amortized cost O(m/2 / (m/4)) = O(1)

