6.006- Introduction to
Algortthms

HHHHHHHHHHHHHHHH
EEEEEEEEEEEEEEEEE

RRRRRRRRRRRRRR

Lecture 5
Prof. Silvio Micali

DNA matching

Given two strings S and T over same finite alphabet

Find largest substring that appears 1n both
If S=algorithm and T=arithmetic

Then return “rithm”: algorithm arithmetic

* Also useful in plagiarism detection

* Say strings S and T of length n

Naive Algorithm

* For L=n downto 1

. for all length-L substrings X1 of S

° for all length-L substrings X2 of T
. 1f X1=X2, return X1

Runtime analysis
— n candidate lengths L
— n substrings of that length in each of Sand T

— L time to compare the strings
— Total runtime: (n%)

+ Bynary search

* Start with L=n/2

. for all length L substrings X1 of S

. for all length L substrings X2 of T
. if X1=X2 (1.e., 1f success),

then “try larger L”
if failed, “try smaller L”’

Runtime analysis
Q(n? log n) Better than €2(n#)!

Via (Balanced) BSTs

Complexity?

135213 Array indexed by substrings

0 ~
1 ~
2 ~
~

~ Substrings are no numbers!
X’ YES
~
X YES
~

OK, OK

For every possible length L=n,...,1 N

Insert all length L substrings of S into table O(nL)

For each length L substring of T, check if in table O(nL)
Overall Complexity: O(n?)

With binary search on length, total is O(n? log n)
Next time: O(n log n)

Generalizing: Dictionaries

* A set containing items; each item has a key
* what keys and items are 1s quite flexible
* Supported Operations:

— Insert(item): add given ifem to set
— Delete(item): delete given item to set

— Search(key): return the item corresponding to the
given key, 1f such an item exists

Other Examples

* Spelling correction
— Key 1s a misspelled word, item 1s the correct spelling
* Python Interpreter

— Executing program, see a variable name (key)

— Need to look up its current assignment (item)

L.et me see if I understood...

(1) Dictionaries are everywhere
(2) Anything 1n the computer 1s a sequence of bits
(3) Dictionaries can be implemented by tables

— Antidisestablishmentgriay
— 28*5 =140 bits
— So, use array of size 24

* Isn’t this too much space for 100,000 words?

Hash Functions

s Exploit sparsity
— Huge universe U of possible keys
— But only n keys actually present
— Want to store in table (array) of size m~n

* Define hash function h: U - {1, ..., m}
— Filter key k through h() to find table position
— Table entries are called buckets

* Time to insert/find key 1s
— Time to compute h (generally length of key)
— Plus one time step to look in array

U :universe of all possible keys;
huge set

K :actual keys,; small set but not
known in advance

(1) insert item1

with key k1

item1

item3

(111) item3

(i1) item2

item2

with k2

(1v) suppose we now try to mset item4,

with key k4 and h(k4) = h(k2) ...

h(k1)

h(k3)

h(k2)

m-1

(1) insert item1

with key k1

item1

item3

(i11) item3

with k3

\
(ii) item2 ~
with k2

IF (1v) insert item4 with key k4

and h(k4) = h(k2) ...

h(k1)

h(k3)

h(k2) = h(k4)
(collision)

m-1

Collisions

* What went/can go wrong?
— Distinct keys x and y
— But h(x) = h(y)
— Called a collision
* This 1s unavoidable: 1f table smaller than
range, some keys must collide...
— Pigeonhole principle
* What do you put in the bucket?

Coping with collisions

* Ideal: Change to a new “uncolliding” hash
function

— Hard to find, and takes time
* Idea2: Chaining

— Put both items in same bucket (this lecture)

* Idea3: Open addressing
— Find a different, empty bucket for y (next lecture)

Chaining
- Each bucket, linked
list of contained items

h(k1)

temi | _ Space used 1s
space of table

. — > plus one unit per item
item3 (size of key and item)
-— > —T>
h(k2) = h(k4)
item2 item4

U : universe of all possible keys

K :actual keys, not known in advance

Problem Solved?

* To find key, must scan whole list in key’s bucket
* Length L list costs L key comparisons
* If all keys hash to same bucket, lookup cost ©@(n)

Let’s Be Optimistic !

* Assume keys are equally likely to land 1n
every bucket, independently of where other
keys land

 (Call this
the “Simple Uniform Hashing” assumption

— (why/when can we make this assumption?)

Average Case Analysis under SUHA

* n1tems 1n table of m buckets
* Average number of 1tems/bucket 1s a=n/m

* So expected time to find some key x 1s 1+a.
* O(1) if a=0(1), 1.e. m=L2(n)

Reality

Keys are often very nonrandom
— Regularity (evenly spaced sequence of keys)
— All sorts of mysterious patterns

Ideal solution: ideal hash function: random
h:U - {1, .., m}

Solution: pick a hash function whose values
“look” random

Similar to pseudorandom generators

Whatever function, always some set of keys that
1s bad

— but hopefully not your set

Division Hash Function

* h(k) =k mod m
* k, and k, collide when k,=k, (mod m)
— Unlikely 1f keys are random

* ¢.g. 1if m 1s a power of 2, just take low order
bits of key

— Very fast (a mask)

— And people care about very fast in hashing

Problems

* Regularity
— Suppose keys are x, 2x, 3x, 4x,
— Suppose x and chosen m have common divisor d
— Then (m/d)x 1s a multiple of m
* 50 1'X = (1tm/d)x mod m
— Only use 1/d fraction of table
* E.g, m power of 2 and all keys are even
* So make m a prime number
— But finding a prime number 1s hard
— And now you have to divide (slow)

Multiplication Hash Function

Suppose we’re aiming for table size 2"

and keys are w bits long, where w>r 1s the machine word
Multiply k with some a (fixed for the hash function)
then keep certain bits of the result as follows

I w bits >

I

. I (v choico

! r bits keep this

Python Implementation

Python objects have a hash method

— Number, string, tuple, any object implementing
~_hash

Maps object to (arbitarily large) integer
— So really, should be called prehash
Take mod m to put in a size-m hash table

Peculiar details
— Integers map to themselves
— Strings that differ by one letter don’t collide

Conclusion

Dictionaries are pervasive
Hash tables implement them efficiently

— Under an optimistic assumption of random keys

— Can be “made true” by choice of hash function

How did we beat BSTs?
— Used indexing

— Sacrificed operations: previous, successor

Next time: open addressing

Thank you!

Multiplication Hash Function
Bit shift

The formula:

h(k) = [(a * k) mod 2¥] >> (w -)
— Multiply by a
— When overflow machine word, wrap

— Take high 7 bits of resulting machine word
— (Assumes table size smaller than machine word)

Benefit: Multiplying and bit shifts faster than division
Good practice: Make a an odd integer (why?) > 2w

Today’s Topic

“Optimist pays off!”’

a.k.a. The ubiquity and usefulness
of dictionaries

Implementation

e use BSTs!

* can keep keys 1n a BST, keeping a pointer from
each key to 1ts value

* O(log n) time per operation
* Often not fast enough for these applications!

e Can we beat BSTs?

if only we could do all operations in O(1)...

|A parenthesis: DNA Matching

BSTs?

