
6.006- Introduction to Algorithms

Lecture 3
Prof. Costis Daskalakis

Overview

•  Runway reservation system:
– Definition
– How to solve with linked-lists

•  Binary Search Trees
– Operations

•  Next time: Balanced Search Trees
Readings: CLRS 10, 12.1-3

10

12 5

1 6

7

http://izismile.com/tags/Gibraltar/

Runway reservation system

•  Problem definition:
– Single (busy) runway
– Reservations for landings

• maintain a set of future landing times
•  a new request to land at time t
•  add t to the set if no other landings are

scheduled within < 3 minutes from t
• when a plane lands, removed from the set

Runway reservation system

•  Example

–  R = (41, 46, 49, 56)
–  requests for time:

•  44 => reject (46 in R)
•  53 => ok
•  20 => not allowed (already past)

•  Ideas for efficient implementation ?

37 41 46 49 56
time (mins)

now x x x x

Proposed algorithm
•  (keep R as a linked-list)

•  Complexity?
•  Can we do better?

init: R = [] �
�
req(t): if t < now: return "error"�
for i in range (len(R)):�
if abs(t-R[i]) < 3: return ”runway busy"�
R.append(t)�

Some other options:
•  Keep R as a sorted list:

–  on request t, it takes linear time to find the right location
in the list where t needs to be inserted

–  before inserting t at found location check whether the
numbers on the left and right of the location are ≤t-3 and
≥t+3 respectively

•  Keep R as a sorted array:
–  takes O(log n) to find the place to insert new t
–  but still requires linear time to actually insert (requires

shifting of elements)

Need best of both worlds:

 fast insertion into sorted list

Binary Search Trees (BSTs)
•  A tree …
•  …where each node x has:

–  a key[x]
–  three pointers:

•  left[x] : points to left child
•  right[x] : points to right child
•  p[x] : points to parent

•  E.g. key[x1]=10
•  left[x1]=x2
•  p[x2]=x1

•  p[x1]=NIL

10

12 5

1 6

7

x1

x2 x3

Binary Search Trees (BSTs)

•  Defining property
(i.e. what makes it a binary
SEARCH tree):

•  for any node x:
– for all nodes y in the

left subtree of x:
key[y] ≤ key[x]

– for all nodes y in the
right subtree of x:

 key[y] ≥ key[x]

•  How are BSTs created?

10

12 5

1 6

7

Growing BSTs

•  Insert 10
•  Insert 12
•  Insert 5
•  Insert 1
•  Insert 6
•  Insert 7

10

12 5

1 6

7

root

height

3

2

1

0

BST as a data structure

•  Supported Operations:

–  insert(k): insert a node with key k at the
appropriate location of the tree

49

56 41

46

root e.g. insert(37)

?

?

BST as a data structure

•  Supported Operations:

–  insert(k): insert a node with key k at the
appropriate location of the tree

49

56 41

46

root e.g. insert(37)

37

Aside: Can do the “within 3” check for reservation system
during insertion.

BST as a data structure

•  Supported Operations:

–  find(k): finds the node containing key k (if it exists)

49

56 41

46

root e.g. find(46)

?

?

49

56 41

46 37

49

56 41

46

?

?

?

BST as a data structure

•  Supported Operations:

–  delete(k): delete the node containing key k, if such a node
exists

49

56 41

46

root e.g. delete(46)

?

?

49

56 41

46 37

49

56 41

46

?

?

?

BST as a data structure

•  Supported Operations:

–  delete(k): delete the node containing key k, if such a node
exists

49

56 41

root e.g. delete(46)

?

?

49

56 41

37

49

56 41

Question: What if we have to delete a node that is internal?
How do we fill in the hole? A: next lecture.

BST as a data structure

•  Supported Operations:

–  insert(k): insert a node with key k at the appropriate
location of the tree

–  find(k): finds the node containing key k (if it exists)
–  delete(k): delete the node containing key k, if such a node

exists
–  findmin(x): finds the minimum of the tree rooted at x
–  deletemin(): finds the minimum of the tree and deletes it
–  next-larger(x): finds the node containing the key that is

the immediate next of key[x]

Next-larger

next-larger(x):
•  If right[x] ≠ NIL then
 return findmin(right[x])
•  Otherwise

y ← p[x]
While y≠NIL and x=right[y] do

•  x ← y
•  y ← p[y]

Return y

next-larger()
5

7

10

12 5

1 6

7

next-larger() = 6

x

y

Next-larger

next-larger(x):
•  If right[x] ≠ NIL then
 return findmin(right[x])
•  Otherwise

y ← p[x]
While y≠NIL and x=right[y] do

•  x ← y
•  y ← p[y]

Return y

next-larger()
5

7

10

12 5

1 6

7

next-larger() = 6

x

y

Next-larger

next-larger(x):
•  If right[x] ≠ NIL then
 return findmin(right[x])
•  Otherwise

y ← p[x]
While y≠NIL and x=right[y] do

•  x ← y
•  y ← p[y]

Return y

next-larger()
5

7

10

12 5

1 6

7

next-larger() = 6

= 10

x

y

Back to runway reservation system
•  Introducing extra requirements:

e.g. how many planes are
scheduled to land at times ≤ t ?

•  Augment the BST structure by
keeping track of size of
subtrees rooted at all nodes

•  To figure out how many planes
will land ≤ t:
–  Walk down the tree to find where

key t would have been inserted in
the tree…

–  … and for every node where you
forked to the right:

•  add 1 + size of subtree on the
left of that node

49 46
1 + 2 + 1 + 1 = 5

79 64
subtree

subtree

79

49

46

43 64 83

6

2

1

3

1 1

what lands before 79?

keep track of size of subtrees,
during insert and delete

e.g. #planes land ≤ 80?

e.g. #planes land ≤ 75? A: 4

Analysis

•  We have seen insertion,
deletion, search, findmin, etc.

•  How much time does any of
this take ?

•  Worst case: O(height)
 => height really important

•  After we insert n elements,
what is the worst possible BST
height ?

10

12 5

1 6

7

Analysis

•  n-1

•  so, still O(n) for the runway

reservation system operations

•  Next lecture: balanced BSTs
•  Readings: CLRS 13.1-2
•  Hw: notice correction in question

4: a ‘>’ was turned to a ‘≥’

1

5

6

7

10

12

