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Menu 

Problem: peak finding 
1 dimension 
2 dimensions 

Technique: Divide and conquer 



Peak Finding: 1D 

Consider an array A[1…n] : 
 
 
Element A[i] is a peak if not smaller than its neighbor(s).  

10 13 5 8 3 2 1 15 

if i ≠ 1, n : A[i]≥A[i-1] and A[i]≥A[i+1] 
If i=1 :  A[1] ≥ A[2] 
If i=n :  A[n] ≥ A[n-1] 

 
Problem: find any peak. 
 



Peak-Finding Ideas ? 

Algorithm I: 
Scan the array from left to right 
Compare each A[i] with its neighbors 
Exit when found a peak 

Complexity:  
Might need to scan all elements, so T(n)=Θ(n) 



Next Idea 

Algorithm II: 
Compare middle element with neighbors 

If A[n/2-1]>A[n/2] 
   then search for a peak among A[1]… A[n/2-1] 
Else, if A[n/2]<A[n/2+1] 
   then search for a peak among A[n/2]… A[n] 
Else A[n/2] is a peak! 
 
                            Running time ? 
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Algorithm II: Complexity 



Algorithm II: Complexity 

•  We have 
 
 

•  Unraveling the recursion,  
  T(n)= Θ(1) + Θ(1) +…+ Θ(1)  = Θ(log n) 

 
 

•  log n  is much much better than n   ! 

Recursion 
Time for comparing A
[n/2] with neighbors 

log2 n 

T(n) = T(n/2) + Θ(1) 

Time needed to find 
peak in array of length n 



Divide and Conquer 

•  Very powerful design tool: 
– Divide input into multiple disjoint parts 
– Conquer each of the parts separately 

    (using recursive call) 
 

•  Occasionally, we need to combine results 
from different calls (not used here) 



Consider a 2D array A[1…n, 1…m] : 
 
 
 
 
 
 
A[i] is a 2D peak if not smaller than its (at most 4) neighbors. 
 
Problem: find any 2D peak. 

Peak Finding: 2D 

10 8 5 
3 2 1 
7 13 
6 8 

4 
3 



2D-Peak-Finding Ideas? 

Algorithm 0: 
For each row, until you find a peak: 

 1. find a row-peak 
 2. compare it with North- and South-neighbors 
 3. If ≥, then done 

? 



Algorithm I:  
recycle better 1D algorithm 

12 8 5 
11 3 
10 9 

6 
2 

8 4 1 

12 9 6 

For each column j, find its global maximum B[j] 

Apply 1D peak finder to find a peak  (say B[j]) of B[1...m] 

Correctness: …  

Complexity: Θ(n⋅m) 

Recycling is an art… 
“Map it 
back” 

Return 
it! 



Algorithm I’: use the 1D algorithm 

•  Recall: 1D peak finder uses only 
O(log m) entries of B 

•  Modify Algorithm I so that it only 
computes B[j] when needed ! 

•  Total time ? 
    …only O(n log m) ! 

– Need O(log m) entries B[j] 
– Each computed in O(n) time 

12 8 5 
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10 9 
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Algorithm II 

•  Pick middle column ( j=m/2 ) 
•  Find global maximum a=A[i,m/2] in that column 
      (and quit if m=1) 
•  Compare a to b=A[i,m/2-1] and c=A[i,m/2+1]  
•  If b>a  
     then recurse on left columns 
•  Else, if c>a  
      then recurse on right columns 
•  Else a is a 2D peak! 

a b c 



Algorithm II: Example 

12 8 5 
11 3 
10 9 

6 
2 

8 4 1 
9 

12 

a c b 

•  Pick middle column ( j=m/2 ) 
•  Find global maximum a=A[i,m/2] in that column 
      (and quit if m=1) 
•  Compare a to b=A[i,m/2-1] and c=A[i,m/2+1]  
•  If b>a  
     then recurse on left columns 
•  Else, if c>a  
      then recurse on right columns 
•  Else a is a 2D peak! 



Algorithm II: Correctness 
Claim: If b>a, then there is a peak among the 

 left columns 
Proof (by contradiction): 

Assume no peak on the left 
Then b must have a neighbor b1 with 
higher value 
And b1 must have a neighbor b2 with 
higher value 
… 
We have to stay on the left side – why? 
(because we cannot enter the middle 
column) 
But at some point, we would run out the 
elements of the left columns  
Hence, we have to find a peak at some 
point. 

Question: Does the above claim suffice for the 
proof of correctness of the algorithm? 
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Algorithm II: Complexity 

•  We have 
T(n,m)= T(n,m/2) + Θ(n) 

 
•  Hence: 

•   T(n,n)= Θ(n) + Θ(n) +…+ Θ(n) 
 

Recursion 

Scanning middle column 

log2 m 

= Θ(nlog m) 



Faster than O(n log n) ? 
•  Idea: 

•  Pictorially: 

read only O(n +m) elements 

Reading only O(n + m) elements, reduce an array of 
             candidates to an array of                        candidates n/2×m/2n×m



Faster than O(n log n) ? 

•  Hypothetical algorithm has recursion: 
 
 

•  Hence: 
 

= Θ(n + m) ! 
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Towards a linear-time algorithm 
What elements are useful to check? 

- suppose we find global 
max on the cross 



Towards a linear-time algorithm 
What elements are useful to check? 

- suppose we find global 
max on the cross 
- if middle element done! 



Towards a linear-time algorithm 
What elements are useful to check? 

- find global max on the 
cross 
- if middle element done! 

- o.w. two candidate sub-
squares 

- determine which one to 
pick by looking at its 
neighbors not on the cross 
(as in Algorithm II) 

? 

? 

Claim: The sub-square chosen by the above procedure (if any), always 
contains a peak of the large square. 

OK, what else is needed for an O(n+m) algorithm? 
Hmmm… 



First Problem Set 
Out Today ! 

•  Refer to class website for further information! 

•   Good Luck! 

•   I.e., GOOD WORK! 


