6.006-Introduction to Algorithms

' HHHHHHHH .CORMEN

iiGOiiTH % S

Lecture 1
Prof. Costis Daskalakis

Today’s Menu

Motivation

Course Overview

Administrivia

Linked Lists and Document Distance
Intro to “Peak Finding”

“Al-go-rithms”: what?

Nothing to do with Log-arithms ©

Def: A well-specified method for solving a
problem using a finite sequence of instructions.

Description might be English, Pseudocode, or
real code

Key: no ambiguity

Al-Khwirizmi (780-850)

Efficient Algorithms: Why?

* Solving problems consumes resources that are
often limited/valuable:

— Time: Plan a flight path
— Space: Process stream of astronomical data
— Energy: Save money

* Bigger problems consume more resources

* Need algorithms that “scale” to large inputs, e.g.
searching the web...

* Market value: 6.006 1s useful 1n all kinds of job
Interviews ;-)

Efficient Algorithms: How?

Define problem:

— Unambiguous description of desired result
Abstract 1rrelevant detail

— “Assume the cow 1s a sphere”
Pull techniques from the “algorithmic toolbox”
— [CLRS] class textbook

Implement and evaluate performance

— Revise problem/abstraction

Generalize
— Algorithm to apply to broad class of problems

Class Content

8 modules with motivating problem/pset

Linked Data Structures: Document Distance/
Flight Planning

Divide & Conquer: Peak Finding

Hashing: Efficient File Update/Synchronization
Sorting

Graph Search: Rubik’s Cube

Shortest Paths: Google Maps

Dynamic Programming: print justification
Wildcard: numerical/NP-hardness/crypto

Administrivia

Course information: class website
Profs: Costis Daskalakis, Silvio Micali
TAs: Deckelbaum, Ionescu, Kishore, Oliveira, Wu

Sign-up to the homework submission website:
https://alg.csail.mit.edu (same as https://sec.csail.mit.edu/)

Piazza: online discussion
Preregs: 6.01, 6.042 (if you don’t have them, talk to us)
Python

Grading: Problem sets (30%)
Quizl (March 14 (?): 7.30-9.30pm; 20%)
Quiz2(April 18 (?): 7.30-9.30pm; 20%)
Exam (30%)

Read collaboration policy!

Document Distance

* Given 2 documents, how similar are they?
—1f one “document ” is a query, this 1s web search

— 1f the two documents are homework submissions,
can detect plagiarism

* Goal: algorithm to compute similarity

Problem Definition

* Need unambiguous definition of similarity
* Word: sequence of alpha characters
— Ignore punctuation, formatting
* Document: sequence of words
* Word frequencies:
D(w) 1s number of occurences of w 1n D

« Similarity based on amount of word overlap

Vector Space Model

* [Salton, Wong, Yang 1975]
 Treat each doc as a vector of its words

— one coordinate per word of the English dictionary

4 dog
C.8- docl = “the cat” 1
doc2 = “the dog”

— stmilarity by dot-product
DioDy =) Di(w)-Dy(w) 1&5---3

— trouble: not scale invariant dlod2=1
documents “the the cat cat” and “the the dog dog”

will appear closer than docl and doc2

Vector Space Model

* Solution: Normalization
— divide by the length of the vectors

DloDQ
D[] - 1] D2]]

— measure distance by angle:

DioD
0(D1, Dy) = acos (L° 2)

[D1l] - || D2]

e.g. 0=0 documents “identical”
(if of the same size, permutations of each other)

0=n/2 not even share a word

Algorithm

Read file
Make word list (divide file into words)
Count frequencies of words

Suppose each document has been processed into a list
of distinct words with their frequencies

Compute dot product

— for every word 1n the first document, check if it appears in
the other document; 1f yes, multiply their frequencies and
add to the dot product

* worst case time: order of #words(D,) x #words(D,)
— micro-optimization:
* sort documents into word order (alphabetically)

* after having sorted, can compute inner product in time
#words(D,) + #words(D,)

Python Implementation

* Docdistl.py (on course website)

* Read file: read file(filename)
— Output: list of lines (strings)

* Make word list: get words from line list(L)
— Output: list of words (array)

* Count frequencies: count frequency(word list)
— Output: list of word-frequency pairs

* Sort into word order: insertion sort()
— Output: sorted list of pairs

* Dot product: inner product(D1, D2)
— Output: number

Inputs:

Jules Verne: 25K
Bobbsey Twins: 268K
Francis Bacon: 324K
Lewis and Clark: 1M
Shakespeare: 5.5M
Churchill: 10M

Profiling (docdist2.py)

* Tells how much time spent in each routine
— 1mport profile
— profile.run(“main()”)
* One line per routine reports
1. #calls
2. #total time excluding subroutine calls
3. Time per call (#2/#1)
4. Cumulative time, including subroutines
5. Cumulative per call (#4/#1)

&= auk:~/Class/6006/lectures/101/

File Edit VYiew Options Transfer Script Tools Help
DVRDP BB BEI TR @B,
‘ | auk:~/Class/B006/lectures/101/ | 3
tl.verne.txt t4.arabian. txt t7.tenmi | 17on. txt A
t2.hobsey. txt t5.churchill.txt t8.shakespeare.txt W
t3. lewis.txt t6.onemillion. txt t9.bacon.txt
auk:101> python source/docdist2.py data/t2.hobsey.txt data/t3.lewis.txt
File data/%g.bobsey.txt : 6667 1ines, 49785 words, 3354 distinct words
File data/t3.lewis.txt : 15996 1ines, 182355 words, 8530 distinct words
The distance hetween the documents is: 0.574160 (radians)
3861660 function calls in 94.738 CPU seconds
ordered by: standard name
ncalls tottime percall cumtime percall filename:Tineno(function)
1 0.000 0.000 0.000 0.000 :0(acos)
1241849 4,320 0.000 4,320 0.000 :0Cappend)
1300248 4.432 0.000 4.432 0.000 :0(Cisalnum)
232140 0.772 0.000 0.772 0.000 :0(:}0"|n)
368314 1.300 0.000 1.300 0.000 :0(Ten)
232140 0.760 0.000 0.760 0.000 :0(lower)
2 0.000 0.000 0.000 0.000 :0Copen)
2 0.000 0.000 0.000 0.000 :O(r‘ange)
2 0.008 0.004 0.008 0.004 :0(readlines)
1 0.000 0.000 0.000 0.000 :0(setprofile)
1 0.000 0.000 0.000 0.000 :0(sgrt)
1 0.004 0.004 94,738 94.738 <string>:1(<module>)
2 34.366 17.183 34.394 17.197 docdist2.py:105(count_frequency)
2 9,781 4.890 9,781 4.890 docdist2.py:122(insertion_sort
; 2 0.000 0.000 94.438 47.219 docdist2.py:1l44 (word_frequencies_for_file
3 0.156 0.052 0.292 0.097 docdist2.py:162(inner_product)
1 0.000 0.000 0.292 0.292 docdist2.py:188(vector_angle)
1 0.004 0.004 594.734 04,734 docdist2.py:198(main)
2 0.000 0.000 0.008 0.004 docdist2.py:49(read_file)
23.605 11.803 50.255 25.128 docdist2.py:65(get_words_from_Tine_list)
226 12.409 0.001 26.650 0.001 docdist2.py:77(get_words_from_string)
1 0.000 0.000 04,738 04,738 profi]e:o(main(g)
0 0.000 0.000 profile:0Cprofiler)
232140 1.424 0.000 2.184 0.000 string.py:218(Tower)
232140 1.396 0.000 2.168 0.000 string.py:306(join)
auk:101> R =
Ready ssh2: AES-256 41, 10 41 Rows, 87 Cols ¥T100

docdist1.py - C:\Documents and Settings\David\My Doc... @@@
File Edit Format Run Options Windows Help

HERBBHEB AR B RRR BB RRBHHBRRHEBRRRHEBRRBHAHERES
Operation 2: sSplit the text lines into words
HERBBH BB RB BB RR BB RRBHHBRBHSBRBRHHHBRBHAEERES
def get words from line list(L):
Parse the given list L of text lines into words.
Return list of all words found.

word list = []
for line in L:
words in line = get wor rom string(line)
word list = word list + words in line
return word list

Ln: 130|Col: 18

What’s with +?

L=L1+L2 1s concatenation of arrays
Take L1 and L2

Copy to a bigger array

Time proportional to sum of lengths

Suppose n single-word lines
Time 1+2+...+n =n(n+1)/2 = O(n?)

Solution

word list.extend(words 1n line) : appends list
named “words 1n line” to list named “word list”

Takes time proportional to length of list
“words_in line”
Total time 1n example of n single-word lines: O(n)

resulting improvement:
— get words from line list 235s=20.12s

Further Improvements

Docdist4.py: count frequencies of words using
dictionary: total to 42s

5.py: Process words instead of chars: to 17s
6.py: merge sort instead of insertion sort: 6s

7.py: remove sorting altogether and use dictionary
(again) for inner product: 0.5s

Overall improvement from 94 s to 0.5 s.

This 1s the equivalent of 12 years of progress in
hardware (1f Moore’s law still held, which 1t
doesn’t)

Next time: Peak Finding

Find a point that 1s bigger than its neighbors
1.e. a local maximum

can do this by querying O(n?) locations of table
faster?

