
Introduction to Algorithms March 14, 2012
Massachusetts Institute of Technology 6.006
Profs. Constantinos Daskalakis and Silvio Micali Quiz 1 SOLUTIONS

Quiz 1 SOLUTIONS

You will have 2 hours to complete this exam. No notes or other resources are allowed. Unless
otherwise specified, full credit will only be given to a correct answer which is described clearly
and concisely.

Do not discuss this exam with anyone who has not yet taken it.

Problem Points Grade Initials

Name 1

1 14

2 10

3 20

4 15

5 10

6 30

Total 100

Name: [1 point]

R01 R02 R03 R04 R05 R06 R07
WF10 WF11 WF12 WF1 WF2 WF3 WF3

Shaunak Shaunak Alan Jeff Rafael Henrique Dragos

6.006 Quiz 1 SOLUTIONS 2

Problem 1. True/False [14 points]

Answer True or False. You do not need to explain your answer.

(a) If f(n) = Ω(g(n)) and g(n) = Θ(h(n)), then f(n) = Ω(h(n)).
True. This follows directly from the definitions of Ω and Θ.

(b) If f(n) = o(g(n)), then log (f(n)) = o(log(g(n))).
False. For example, f(n) = n and g(n) = n2.

(c) If a student cheats by copying another’s code, then defining functions in a different
order will help him escape a plagiarism detection algorithm which uses the notion of
document distance from lecture.
False. Document distance compares word frequencies, not order.

(d) If a student cheats by copying another’s code, then renaming variables and functions
will help him escape a plagiarism detection algorithm which uses the notion of docu-
ment distance from lecture.
True. Renaming variables and functions will change the word frequency statistics.

(e) The following algorithm finds a peak in an array in O(log n) time: if the array only
has one element, return it. Otherwise, pick the two adjacent elements at the middle
and recurse on the side of the array containing the larger of the two.
True.

(f) If you use chaining to resolve collisions, you never have to resize the hash table, as
long as you are willing to take a hit in performance.
True.

(g) Merge sort can be implemented so that it uses O(n) space and O(n log n) time.
True.

6.006 Quiz 1 SOLUTIONS 3

Problem 2. Recurrences [10 points]

(a) Consider the following argument:

Consider the recurrence T (n) = 2T
(
n
2

)
+ Θ(n2).

At the top level of recursion, Θ(n2) work is done. At the next level of re-
cursion, there are 2 subproblems, each of which requires Θ(

(
n
2

)2
) work,

for a total of 1
2
Θ(n2) = Θ(n2) work. At the next level of recursion, there

are 4 subproblems, each of which requires Θ(
(
n
4

)2
) work, for a total of

1
4
Θ(n2) = Θ(n2) work. This continues for log2(n) levels. Since each level

requires Θ(n2) work, the total runtime is T (n) = Θ(n2 log n).

i. [3 points] Briefly explain what is wrong with this argument.
Solution: The coefficients of the n2 term decrease geometrically, and n2+n2/2+
n2/4+· · · converges to Θ(n2). In this analysis, they lost the exponential decrease
in the constant factors by converting to Θ notation at each step.

ii. [2 points] What is the real solution to this recurrence?
Solution: T (n) = Θ(n2). This can be found by the above argument, by the
Master theorem, or by several other methods.

(b) [5 points] Find the asymptotic growth (Θ notation) of T (n), given that it obeys the
follow recurrence. (Hint: Think about the number of leaves in the recursion tree.)

T (n) = T (n/3) + T (2n/3) + Θ(1)

Solution: T (n) = Θ(n).
There are several possible approaches to this problem.
Approach 1. The total running time is proportional to the total number of nodes in the
recurrence tree. (Note: It is not true that the running time of every level of the tree is
Θ(1), since the number of nodes in a level is not constant.) Furthermore, since every
node in the tree has out-degree 0 or 2, the total number of nodes in the tree is at most
twice the number of leaves. Therefore, it suffices to obtain a bound on the number

6.006 Quiz 1 SOLUTIONS 4

of leaves in the tree. We can prove that the recurrence tree has n nodes by induction:
The base cases are clear, and the result follows from the fact that the number of leaves
in the tree for T (n) is the sum of the number of leaves in the tree for T (n/3) and
T (2n/3).
Note: A less rigorous argument similar to the above approach imagines the behavior
of T (n) as a sequence of steps partitioning an array of size n. At every step, we divide
one of the pieces into two pieces (one of 2/3 the size and one of 1/3 the size) and
we recurse on all of these pieces until a piece has size 1 (in which case it is a leaf).
Therefore, the total number of leaves is n. Furthermore, the total number of time we
needed to break apart a segment is Θ(n), and we needed to do Θ(1) work for each of
these partition operations. Since each leaf only requires Θ(1) work, we conclude that
the total amount of work necessary is Θ(n).
Approach 2. We can directly prove that T (n) = Θ(n) by induction. For example, to
prove that T (n) = O(n), we know that there is a constant d such that

T (n) ≤ T (n/3) + T (2n/3) + d

for all n. We now claim that there is some constant c such that

T (n) ≤ cn− d

for all n. Indeed, we can choose a c such that this holds for the base cases n = 1 and
n = 2. We now proceed by induction. Suppose that T (n) ≤ cn − d for all n < N .
We now observe that

T (N) ≤ T (N/3) + T (2N/3) + d ≤ c(N/3)− d+ c(2N/3)− d+ d = cN − d

and the bound T (n) = O(n) is proven by induction. A similar argument can be used
to prove that T (n) = Ω(n).

6.006 Quiz 1 SOLUTIONS 5

Problem 3. Short Answer [20 points]

(a) [2 points] If a hash table using open addressing has a load factor of α, under the UHA
assumption, how many tries does it take to insert a key, in expectation?
Solution: 1/(1− α). When the load factor is α, each attempted insertion under UHA
has success probability 1−α. Therefore, the expected number of attempts is 1/(1−α).

(b) [6 points] Consider the followingO(n3) algorithm for finding a peak on an (n×n×n)
cube of integers C:

• Create an (n× n) square S, where

S(i, j) = max
k=1,...,n

C[i][j][k]

• Use the O(n) peak-finding algorithm from class to find a peak in S.
• Return the peak found.

Explain how to modify this algorithm to obtain an O(n2) algorithm for finding a peak
in an (n× n× n) cube.

Solution: We can perform the O(n) algorithm for an n × n square as before, but we
do not compute every entry of the square S in advance. Instead, every time the 2d
algorithm queries a cell in S, we do a linear scan over the appropriate n entries in C
and use the max of these n entries for the value of the cell in S. By lazily computing
the entries in S only when needed for the 2d algorithm, we slow down the 2d algorithm
by a factor of n. Therefore, the overall running time of our algorithm is O(n2).

6.006 Quiz 1 SOLUTIONS 6

(c) The next two problems are about the AVL algorithm for balancing a tree.

i. [2 points] Change one value in the following tree to make it satisfy the binary
search tree property. (You may have to use a non-integer value.)

Solution: Either change the 14 to something between 17 and 18 or change the 17
to something between 13 and 14.

ii. [3 points] Perform a single rotation on your answer from the previous part to
make it satisfy the AVL invariant.

Solution: Perform a left-rotate on the root node (the node with value 13) on the
tree given as the solution to the previous part. (The resulting tree depends on the
answer given to the part above.)

6.006 Quiz 1 SOLUTIONS 7

(d) Consider using a hash table for integer values and resolving collisions by open ad-
dressing. At attempt i, you hash key k to the slot f(k) + i · g(k) (mod 11), where
f(x) = x (mod 11) and g(x) = x2 + 1 (mod 11). (The first attempt is attempt 0.)

The table is initially empty (every slot has value NIL), and we perform the following
operations in order:

• Insert 3
• Insert 14
• Insert 90
• Insert 2
• Delete 14

i. [5 points] What are the contents of the table after the above sequence operations?
You should fill in the contents in EVERY slot in the hash table with either
DELETED, NIL, or an INTEGER VALUE.

0 NIL
1 2
2 DELETED
3 3
4 NIL
5 NIL
6 NIL
7 90
8 NIL
9 NIL
10 NIL

Solution: See right column in the above table. Note that this problem is faster
if we take the values mod 11 at intermediate steps in the computation. For
example, to determine the hash value of 90, we instead determine the hash value
of 90 mod 11 = 2.

ii. [2 points] At this point, if we search for 13, what is the sequence of slots that we
check before returning that it does not exist in the table?
Solution: 2, 7, 1, 6

6.006 Quiz 1 SOLUTIONS 8

Problem 4. BST Algorithms [15 points]

The following problems have you fill in the code for binary search tree algorithms. It is assumed
that each node of a tree has a value, val, and pointers to its left, right, and parent nodes,
which may be None. All node values are distinct.

You do not need to justify your answer.

(a) i. [5 points] Fill in the missing lines in the following code for next, which returns
the next (successor) node in the binary search tree containing node, or None if
there is none:

def next(node):
if node.right is not None:
cur_node = node.right
while cur_node.left is not None:

cur_node = cur_node.left
return cur_node

else:
prev_node = node
cur_node = node.parent
while cur_node is not None and prev_node == __________:

prev_node = cur_node
cur_node = prev_node.parent

return cur_node

solution
cur_node.right

ii. [2 points] If the tree containing node is balanced and contains n nodes, what is
the asymptotic worst case runtime of this algorithm?

Solution: O(log n). Depending on the case, the algorithm either goes from node
down the tree or from node up the tree. In either case, the depth of the while
loop is bounded by the height of the tree. Since the tree is balanced, the depth is
O(log n).

6.006 Quiz 1 SOLUTIONS 9

(b) i. [5 points] Fill in the missing lines in the following code for verify, which
verifies whether the tree rooted at node satisfies the BST property. The next
function is that from above. You may assume that the input is a valid tree structure
rooted at node, and that the input node has no parent.

def verify(node):
prev_node = node
while prev_node.left is not None:
prev_node = prev_node.left

cur_node = next(prev_node)
while cur_node is not None:
if ____________________________:

return False
prev_node = cur_node
cur_node = next(prev_node)

return True

solution:
prev_node.val > cur_node.val

ii. [3 points] If the tree rooted at node is balanced and contains n nodes, and if
node does not have a parent, what is the asymptotic worst case runtime of this
algorithm?

Solution: Θ(n). In an execution of the algorithm which doesn’t abort and return
false, we traverse each edge twice. Since the number of edges in a tree is one
less than the number of nodes, we conclude that the worst case runtime of the
algorithm is Θ(n).

6.006 Quiz 1 SOLUTIONS 10

Problem 5. Counting Close Pairs [10 points]

A pair (a, b) of integers is a d-close pair if |a − b| ≤ d. Describe an algorithm to efficiently
compute the number of d-close pairs in a list of integers. That is, given a list A and an integer d,
your algorithm should find the number of ordered pairs (i, j) such that i < j and |A[i]−A[j]| ≤ d.

Describe and analyze your algorithm and give a brief argument why it’s correct. Be sure to explic-
itly state your algorithm’s asymptotic running time.

Solution: First, sort A, and let B be the sorted array. (this takes O(n log n) time)

Now, we will proceed by using a two-finger pass on B:

1.Let ctr be the counter of the number of d-close pairs. Initially ctr = 0.

2.Let i and j be two pointers to the entries of B. Initially i = 1 and j = 2.

3.If j < n go to the next step. Else, go to step 6.

4.If B[j]−B[i] ≤ d then j+ = 1. Go back to step 3.

5.Else if B[j]−B[i] > d then ctr ← ctr+ j− i−1 and i← i+ 1. (if i == j after we increase
i then increment j by 1 as well). Go back to step 3.

6.(We only get here when j == n.)

(a)If i == n, return ctr.
(b)Else if B[n]−B[i] > d: then i← i+ 1 and repeat this step.
(c)Else (if B[n]−B[i] ≤ d): then ctr ← ctr +

(
n−i
2

)
and return ctr.

Since this two-finger pass takes linear time (since all its steps take constant time and we will
execute each of them O(n) times), our total running time is O(n log n).

Proof of correctness: The algorithm counts each d-close pair (i, j) once- when we pass the ”left
finger” through i. If they are d-close, then the first index of B that will violate the condition for
index i (and hence update the counter) will be an index greater than j, and therefore we will always
count that pair. We count these pairs only once because we account for this pair only after passing
the left finger through i. It is easy to show furthermore that we do not count any pairs which are
not close.

Rubric: 1 pt for the trivial solution (O(n2))

If your algorithm was worse than O(n2) then in general you got a 0. However, if you had the right
ideas (sorting to compare the elements, but then when comparing you did something wrong) then
you got a maximum of 3-4 points, depending on your mistake.

If your algorithm runs in o(n2) then:

•description and correctness of your algorithm: 7 points (if all correct)

•analysis of runtime: 3 points

6.006 Quiz 1 SOLUTIONS 11

We took off 2 points for the lack of clarity, even if your solution was correct.

Also, we took off 1 point if you counted twice the number of pairs (since this will not be the
correct output), and we took off 4 points if you kept track of the wrong count (people counted the
complement of the d-close pairs, for instance) but you had the right ideas.

6.006 Quiz 1 SOLUTIONS 12

Problem 6. Team Selection [30 points]

As captain of the school football team, you are trying to select a team from n candidate players.
Your goal is to choose the best team based on your ratings of the players.

(a) [10 points] Suppose that each of these players i has two ratings: their speed, ai, and
their strength, bi. All ai and bi are distinct. A player i is majorized by a player j if
player j is faster and stronger than player i - that is, if ai < aj and bi < bj .
Give an efficient algorithm for determining the list of players who are not majorized
by any other player, given the list of the n pairs (a1, b1), (a2, b2), . . . , (an, bn).

Solution: We claim that we can find the non-majorized players in O(n log n) time.
Sort the players by decreasing order of a value and then iterate over the pairs, keeping
track of the maximum b value seen so far - call it bmax. At each step, if the next (ai, bi)
pair has a b value greater than bmax, append it to the answer list and update bmax. The
final answer list consists of the non-majorized players.
Proof of correctness: a player is majorized if and only if some player has a larger a
value and a larger b. When we consider a player, we are comparing its b value precisely
to the maximum b value among players with larger a’s, so we add a player to the list
if and only if he is not majorized.
Proof of runtime: sorting the players by a value takes O(n log n) time. The iteration
takes O(n) time, so the overall runtime is O(n log n).

Rubric: A complete response should describe a correct algorithm that runs in time
O(n log n) with an argument for correctness and a running time analysis. 3 points
were deducted for lack of analysis or major errors, and 2 points for minor errors.
1 point was deducted for sufficient lack of clarity. The obvious but correct solu-
tion that checks all pairs of athletes to eliminate majorized players in n2 time was
awarded the symbolic credit of 1 point. Slower solutions than the obvious one were
not given credit. Algorithms with hints of the correct ideas were awarded symbolic
credit depending on quality/correctness. Making wrong statements, though, decreased
the score to 0

6.006 Quiz 1 SOLUTIONS 13

(b) [20 points] After holding tryouts, you are now able to rate players on their skill ci as
well as their strength and speed. Now, a player i is majorized by a player j if player j
is faster, stronger, and more skillful - that is, if ai < aj , bi < bj , and ci < cj . All ai, bi
and ci are distinct.
Again, give an algorithm for determining the list of players who are not majorized by
any other player, given the list of the n triples (a1, b1, c1), (a2, b2, c2), . . . , (an, bn, cn).

Solution: Again, we claim that there is an O(n log n) solution. Sort the players by
decreasing order of ai, and then iterate over the triples, inserting them into a binary
search tree keyed by bi. This tree is augmented with information about the ci: in
particular, each node keeps track of the maximum ci of any triple stored in its subtree.
It is not hard to verify that one can maintain this augmentation. When inserting a
player, whenever we branch to the left, we check that his c value is greater than that
of the node where we branched, and the maximum ci on that node’s right subtree. If
this fails at any point of insertion, we abort the insertion (and delete this player from
the list). At the end, we perform an in-order traversal to create a list of the players in
the tree. We claim that the resulting list corresponds to the non-majorized players.
Proof of correctness: Essentially, the augmentation lets us determine the maximum
ci of any node with bi > x, for any x. Thus we abort insertion for player i if and
only if there is some player j, with aj > ai (because of the order of insertion), bj > bi
(because of the subtrees/nodes we are checking), and cj > ci (because we are checking
the max in those subtrees/nodes)
Proof of run-time: The sort takes O(n log n) time. We then iterate over n items, doing
O(log n) inserts (even with rebalances and augmentation maintenance). Lastly, we do
a O(n) traversal. Thus the overall run-time is O(n log n).

Alternate Solution:Again, we claim that there is an O(n log n) solution. As in the
first part, we will sort players by decreasing order of a value and then iterate over the
list, determining if each player is majorized or not. At all times, we will maintain two
data structures: a list of non-majorized players found so far, and the subset of that
list that is not majorized when we only take b and c values into account. We call this
subset the bc frontier. Because this frontier is not majorized by b and c value, if we
sort it by increasing b value, it will also be sorted by decreasing c value. We keep the
frontier in a BST sorted by increasing b.
Now, given this information for the first i− 1 triples, we need to determine if the next
triple (ai, bi, ci) is majorized or not. This triple has a smaller a value than any of the
first i− 1 triples, so it is not majorized if and only if it is not majorized by the triples
on the bc frontier. We can check this condition by searching in the BST for the node
on the frontier with the smallest b value greater than bi. If this node has a larger c value
than ci, then (ai, bi, ci) is dominated. Otherwise, we add this triple to the answer list
and to the bc frontier. This node may dominate some nodes on the frontier by b and c
value - we delete those nodes from the tree.

6.006 Quiz 1 SOLUTIONS 14

Proof of correctness: for each triple, we check that it is not majorized by any other
triple by checking it against the bc frontier of all triples with a greater a value.
Proof of run-time: sorting the triples by a value takes O(n log n) time. The iteration
takes O(n log n) time total, because for each triple, we spend O(log n) time searching
the frontier to check the condition, up to O(log n) time if we insert the triple into the
frontier, and up to O(log n) time if we delete it.
Rubric: As in part (a), but with everything doubled.

Test ends here.

