
6.006 Intro to Algorithms Recitation 22 April 29, 2011

Modular Exponentiation
Modular exponentiation is the problem of finding an efficient way of computing ab mod n. Mod-
ular exponentiation is applicable in many security measures, such as RSA. The naive approach
to computing ab mod n would be to calculate a mod n and then multiplying the result by a an
additional b− 1 times. This method requires using O(b) multiplications to get the intended result.

One key observation to make is that we can create shortcuts by squaring results instead of
multiplying by a one at a time. For example, if we want to calculate a10 mod n and we’ve already
calculated a5 mod n, instead of multiplying the result by a 5 more times, we can square a5 to
get a10, getting to our intended result in just one multiplication instead of five. Squaring doubles
the exponent while multiplying increases the exponent by 1. Using a combination of squaring and
multiplying will result in modular exponentiation using O(log b) multiplications to get the intended
result.

To figure out what order of squaring/multiplying we want to execute, it helps to take a look at
the binary representation of b. Given a binary representation of b, (bk, bk−1, ..., b1, b0), we iterate
through the digits of b from most significant to least significant. Every time we see a 1 digit, that
means we must multiply. Every time we see a 0 digit, we don’t multiply. Then, to shift to the next
binary digit, we square the result. For example, to solve ab mod n where b = 10, we break down b
into its binary representation 1010. Then we just iterate through the binary representation:

Start with 1 mod n (1)
b3 = 1, (1 ∗ a) mod n = a mod n (2)

Shift to b2, (a)
2 mod n = a2 mod n (3)

b2 = 0, a2 mod n (4)
Shift to b1, (a

2)2 mod n = a4 mod n (5)
b1 = 1, (a4 ∗ a) mod n = a5 mod n (6)

Shift to b0, (a
5)2 mod n = a10 mod n (7)

b0 = 0, a10 mod n (8)

Parallel Addition
Adding two n-bit numbers the naive way involves adding the least significant digits together, car-
rying over a 1 if necessary, then repeating for all the other digits iteratively until all n bits have
been added together. In this method, we cannot compute the ith bit of the sum before computing
all the bits after it first since the ith bit depends on whether or not there was a carry involved.

With a carry lookahead adder, we can add two n-bit numbers in O(lg n) time by taking ad-
vantage of some clever anticipation of carries and parallelization. For the purposes of this recitation
though, we won’t go over the inner details of how it does this, though you can look online if you’re
interested in more details.



6.006 Intro to Algorithms Recitation 22 April 29, 2011

Instead, we’ll look at the carry-save adder, that allows us to reduce the problem of adding
three n-bit numbers to the problem of adding two n-bit numbers efficiently. Say the problem is
to add three n-bit numbers, i.e. x + y + z. We will reduce this to the problem of adding two
n-bit numbers, u + v. u is going to represent the sum of x, y, z ignoring all carries. v is going to
represent just the carries of x, y, z. For example:

0 0 0 1 1 1 0 1 = x
1 1 0 0 0 1 0 1 = y
1 0 0 1 0 1 1 0 = z
--------------------
0 1 0 0 1 1 1 0 = u

1 0 0 1 0 1 0 1 = v

Note that u and v can be computed completely independently from each other. Before we were
concerned about whether or not the sum would be impacted by carries or not, but now that we’ve
completely separated the carries from the actual addition, we can compute u and v separately. Not
only that, each digit of u and v can be computed separately.

• ui = parity(xi, yi, zi) (= xi + yi + zi mod 2)

• vi+1 = majority(xi, yi, zi) (= 0 if there are more 0s than 1s, =1 if there are more 1s than 0s)

With this observation, if we have n separate processes that can compute parity and majority,
we can compute u and v in O(1) time since u and v both have O(n) bits. Once we’ve reduced
the three sum problem to the two sum problem, we can use our carry lookahead adder to finish
the job. Note that even though we can make O(1) time reductions to the two sum problem, our
running time is still O(lg n) because of the bottleneck of the carry lookahead adder at the very end.
Asymptotically, this isn’t better than using two carry lookahead adders to calculate x+ y and then
(x+ y) + z, but practically it is faster since we’re using fewer carry lookahead additions.

The speed up is even more apparent if we are trying to add n n-bit numbers together. Like
before, we will try to make O(1) time reductions until we have reduced the problem into adding
two n-bit numbers together, from where we can use a carry lookahead adder to finish the job.

The idea is to use a Wallace tree to keep applying the same 3-to-2 sum reductions until the
problem has been reduced to a sum of two numbers. At every step, if we have k sum problem, we
can use approximately k/3 carry-save adders to reduce the problem to an approximately 2k/3 sum
problem. Below is an example of what the tree may look like.



6.006 Intro to Algorithms Recitation 22 April 29, 2011

Since each carry-save adder removes one sum from the problem, we will need O(n) carry-save
adders to reduce the problem down to a two sum problem. Then we apply a single O(lg n) time
carry lookahead adder to finish the sum. Since all the carry-save adders take O(1) time assuming
n processors, the total runtime of summing n n-bit numbers is O(n).


