
6.006 Intro to Algorithms Recitation 21 April 27, 2011

Dynamic Programming: Widget Layout

Setup
There are two types of widgets.

• A leaf widget is a visible widget that someone may see or use, such as a button or an image.
Every leaf widget has a list of possible rectangular sizes it can be presented as. For example,
a button leaf widget may be a rectangle size 3 × 1, 4 × 2, or 6 × 4.

• An internal widget is a rectangular container that contains widgets inside of it. It may
contain a combination of leaf widgets and other internal widgets (may be referred to as
children widgets). Widgets may be arranged horizontally or vertically within the internal
widget. The size of an internal widget must be large enough to contain all the widgets inside
of it (e.g. with a horizontal orientation, width of internal widget is the sum of the widths
of the widgets inside and height of internal widget is the maximum height of the widgets
inside).

In the widget layout problem, our goal is to fit widgets into a rectangular screen of size W ×H
given a hierarchy of widgets. A hierarchy of widgets defines which widgets are contained within
which widgets and in what order. It does not state the orientation of the internal widgets or which
size of the legal sizes of a leaf widget we choose. We are free to vary the orientation or the sizes
of the leaf widgets to try to fit all the widgets in some rectangular screen size W × H . Note that
the hierarchy of widgets can be represented as a tree where the non-leaf nodes are internal widgets
and the leaf nodes are leaf widgets. The root of the tree represents the internal widget that contains
everything. We are deciding if this root widget can be contained in a rectangle size W ×H .

6.006 Intro to Algorithms Recitation 21 April 27, 2011

Defining Subproblems
This is a more complex dynamic programming problem with multiple types of widgets and several
factors needed to be taken account. In the end though, there are two types of guesses that we’re
making. For each leaf widget, we need to choose a size from its list of acceptable sizes. For
each internal widget, we need to choose the orientation of its children widgets. Once an internal
widget’s orientation and children sizes have been set, we can calculate the size of the internal
widget by packing all the children together as tightly as possible.

Our subproblem will be L(v, w), representing the minimum height of a widget v such that v
fits into a rectangle size w × h. We will want to calculate L(v, w) for every widget v and every w
where 0 < w < W . Eventually, we will calculate L(root,W) to determine the minimum height
h of the root widget such that the root fits into a rectangle size W × h. If h ≤ H , then we can
conclude that the widgets will all fit in a rectangle size W ×H .

Combining Subproblems
Leaf Widgets

It is straightforward to figure out what L(v, w) should be if v is a leaf widget. Simply examine
all of the widget’s valid sizes and take the minimum height of all sizes with width less than w. In
other words,

L(leaf v, w) = min(h′ for (w′, h′) in v.sizes if w′ ≤ w) (1)

It is a little bit trickier to figure out what L(v, w) should be if v is an internal node. The
minimum height depends on the sizes of its children and the orientation of its children. Let’s first
make the distinction between vertical and horizontal orientation.

Internal Widgets(Vertical Orientation)

Say we want to find Lvert(v, w), the minimum height of v given that we set v to have a vertical
orientation. The minimum height in this case will be the sum of the minimum heights of the
children given the width constraint w.

Lvert(internal v, w) = sum(L(c, w) for c in v.child) (2)

Internal Widgets(Horizontal Orientation)

Now if we wanted to find Lhoriz(v, w), the minimum height of v given that we set v to have a
horizontal orientation, we have to use another level of dynamic programming to solve this sub-
problem. We introduce H(v, w, i) to be the minimum height such that the horizontal layout of
v.child[i:] (meaning the ith child of v to the last child of v) fits into a w× h rectangle. We eventu-
ally want to solve H(v, w, 1), which represents the minimum height of v with all of its children in
the horizontal layout. Note that H(v, w, 1) = Lhoriz(v, w).

6.006 Intro to Algorithms Recitation 21 April 27, 2011

In this problem, we want to guess the width of the ith child. Say we guess the width of the ith
child to be at most w′. Then we have two components: the ith child and the group formed by the
children after the ith child. The heights of these two components are the results of subproblems
L(v.child[i], w′) and H(v, w − w′, i + 1), whose solutions we should have already calculated be-
fore. The height of this configuration is the maximum height of the two components and we want
to minimize this height over all possible guesses of w′. Thus, we can construct solutions from
subsolutions like so:

H(v, w, i) = min(max{L(v. child [i], w′), (3)
H(v, w − w′, i+ 1)} for 1 ≤ w′ ≤ w) (4)

In order to ensure that we have all the subsolutions required to construct solutions, we want
to iterate i from the last child to the first child. For each child, we need to make guesses for
all possible w′ from 1 to w. If we follow this order, we will eventually solve H(v, w, 1) and
consequently Lhoriz(v, w).

Internal Widgets

Now we have Lvert(v, w) and Lhoriz(v, w). The last step is to figure out which results in the
minimum height. Putting everything together, we get

L(internal v, w) = min{ sum(L(c, w) for c in v.child), (5)
H(v, w, 1)} (6)

Choosing Order
We now have means to combine subsolutions to create solutions to larger problems. The last step
is to choose an order to resolve problems so that we are guaranteed to have all the pieces to solve
each problem. We can do this by traversing up the widget hierarchy, i.e. the widget tree.

6.006 Intro to Algorithms Recitation 21 April 27, 2011

The leaf problems are resolved first since they do not depend on solutions to other problems.
The parents of the leaves are then resolved since they just depend on the solutions to the leaf
problems. At every level, we make sure to solve for all w from 0 to W before moving on to the
next level.

Recursing upwards the tree, we will eventually get to the root widget, where we have the
necessary subsolutions to solve L(root,W). If L(root,W) ≤ H , then the widgets will fit into a
W ×H rectangle. Else, it will not.

Dynamic Programming: Parsimony

Setup
We have DNA sequences of n species, all with length m. We are also given a tree in which these
n sequences are leaf nodes. For each edge that connects two sequences, we can count the number
of mutations (i.e. number of mismatched letters) that occurred on this edge. For example, if there
were an edge connecting GCTA with ACGA, we would see that two mutations occurred on this
edge (G turned into A, T turned into G).Our goal is to fill in all the non-leaf nodes with DNA
sequences to minimize the total number of mutations in the entire tree, accumulated from all the
edges.

A key observation here is that each letter is independent of the other letters. That is, we can
consider just one letter at a time to figure out what the sequences in the inner nodes should be. We
can use dynamic programming to figure out which first letters of the inner nodes produces the least
number of total mutations. Then we can figure out which second letters produces the best results
and so on. Since all sequences have length m. we essentially can break down this problem into m
similar problems where each sequence is length 1 and combine the solutions to these m problems
to get the solution that we want.

6.006 Intro to Algorithms Recitation 21 April 27, 2011

Defining Subproblems
So now we have reduced the problem to sequences of length 1. We introduce the subproblem
c(v, L), representing the minimum cost (number of total mutations) for the subtree rooted at node
v if v is labeled some DNA character L. Our solution will be

min{c(root, L) for each character L} (7)

Combining Subproblems
We define letter distance as follows

D(L,L′) =0 if L = L′ (8)
1 otherwise (9)

D(L,L′) just calculates the number of mutations going from label L to label L′. At some given
node v, we can combine smaller subproblems to calculate c(v, L) like so:

c(v, L) = min{D(L,L1) +D(L,L2) + c(u1, L1) + c(u2, L2) for each possible L1, L2} (10)

Here, we try out every combination of labeling v’s children, u1 and u2. Out of all the combi-
nations, we select the labeling that produces the minimum cost. Note that if a child is a leaf node,
we define c(u, L) = 0 if the label matches the actual sequence at the leaf node, or c(u, L) = ∞ if
the label mismatches. We do this because our tree would be incorrect if there were any errors at
the leaf nodes, we penalize harshly if this happens.

6.006 Intro to Algorithms Recitation 21 April 27, 2011

Choosing Order
Like the widget layout example, we want to start with the leaves and make our way up the tree.
At each node, iterate through every possible labeling and store the best score for each labeling so
that we can use this result to help us solve problems at higher levels. Using the combination of
subproblems formula listed above, we will eventually propagate all the solutions up to the root and
can tell what the inner node sequences are.

