
6.006 Intro to Algorithms Recitation 03 February 9, 2011

Binary Search Tree
A binary search tree is a data structure that allows for key lookup, insertion, and deletion. It is a
binary tree, meaning every node of the tree has at most two child nodes, a left child and a right
child. Each node of the tree holds the following information:

• x.key - Value stored in node x

• x.left- Pointer to the left child of node x. NIL if x has no left child

• x.right - Pointer to the right child of node x. NIL if x has no right child

• x.parent - Pointer to the parent node of node x. NIL if x has no parent, i.e. x is the root of
the tree

Later on this week, we will learn about binary search trees that holds data in addition to the
four listed above but for now we will focus on the vanilla binary search tree.

A binary search tree has two simple properties:

• For each node x, every value found in the left subtree of x is less than or equal to the value
found in x

• For each node x, every value found in the right subtree of x is greater than or equal to the
value found in x



6.006 Intro to Algorithms Recitation 03 February 9, 2011

BST Operations
There are operations of a binary search tree that take advantage of the properties above to search
for keys. There are other operations that manipulate the tree to insert new key or remove old ones
while maintaining these two properties.

find(x, k)

Description: Find key k in a binary search tree rooted at x. Return the node that contains k if it
exists or NIL if it is not in the tree

find(x, k)
while x != NIL and k != x.key

if k < x.key
x = x.left

else
x = x.right

return x

Analysis: At worst case, find goes down the longest branch of the tree. In this case, find
takes O(h) time where h is the height of the tree



6.006 Intro to Algorithms Recitation 03 February 9, 2011

insert(x, k)

Description: Insert key k into the binary search tree T

insert(T, k)
z.key = k //z is the node to be inserted
z.parent = NIL
x = root(T)
while x != NIL //find where to insert z

z.parent = x
if z.key < x.key

x = x.left
else

x = x.right
if z.parent = NIL //in the case that T was an empty tree

root(T) = z //set z to be the root
else if z.key < z.parent.key //otherwise insert z

z.parent.left = z
else

z.parent.right = z

Analysis: At worst case, insert goes down the longest branch of the tree to find where
to insert and then makes constant time operations to actually make the insertion. In this case,
insert takes O(h) time where h is the height of the tree

find-min(x) and find-max(x)
Description: Return the node with the minimum or maximum key of the binary search tree rooted
at node x

find-min(x)
while x.left != NIL



6.006 Intro to Algorithms Recitation 03 February 9, 2011

x = x.left
return x

Analysis: At worst case, find-min goes down the longest branch of the tree before finding
the minimum element. In this case, find-min takes O(h) time where h is the height of the tree

next-larger(x) and next-smaller(x)
Description: Return the node that contains the next larger (the successor) or next smaller (the
predecessor) key in the binary search tree in relation to the key at node x

Case 1: x has a right sub-tree where all keys are larger than x.key. The next larger key will be
the minimum key of x’s right sub-tree

Case 2: x has no right sub-tree. We can find the next larger key by traversing up x’s ancestry
until we reach a node that’s a left child. That node’s parent will contain the next larger key

next-larger(x)
if x.right != NIL //case 1

return find-min(x.right)
y = x.parent
while y != NIL and x = y.right //case 2

x = y
y = y.parent

return y



6.006 Intro to Algorithms Recitation 03 February 9, 2011

Analysis: At worst case, next-larger goes through the longest branch of the tree if x is
the root. Since find-min can take O(h) time, next-larger could also take O(h) time where
h is the height of the tree

delete(x)

Description: Remove the node x from the binary search tree, making the necessary adjustments to
the binary search tree to maintain its properties. (Note that this operation removes a specified node
from the tree. If you wanted to delete a key k from the tree, you would have to first call find(k)
to find the node with key k and then call delete to remove that node)

Case 1: x has no children. Just delete it (i.e. change parent node so that it doesn’t point to x)
Case 2: x has one child. Splice out x by linking x’s parent to x’s child
Case 3: x has two children. Splice out x’s successor and replace x with x’s successor

delete(x)
if x.left = NIL and x.right = NIL //case 1

if x.parent.left = x
x.parent.left = NIL

else
x.parent.right = NIL

else if x.left = NIL //case 2a
connect x.parent to x.right

else if x.right = NIL //case 2b
connect x.parent to x.left

else //case 3
y = next-larger(x)
connect y.parent to y.right
replace x with y



6.006 Intro to Algorithms Recitation 03 February 9, 2011

Analysis: In case 3, delete calls next-larger, which takes O(h) time. At worst case,
delete takes O(h) time where h is the height of the tree

inorder-tree-walk(x)

Description: Print out the keys in the binary search tree rooted at node x in sorted order

inorder-tree-walk(x)
if x != NIL

inorder-tree-walk(x.left)
print x.key
inorder-tree-walk(x.right)

Analysis: inorder-tree-walk goes through every node and traverses to each node’s left
and right children. Overall, inorder-tree-walk prints n keys and traverses 2n times, result-
ing in O(n) runtime


