
6.006 Intro to Algorithms Recitation 01 February 2, 2011

Asymptotic analysis
Asymptotic analysis or “big O” notation is a way of describing the growth of the runtime of an
algorithm without without having to worry about different computers, compilers, or implementa-
tions.

For functions f(n), g(n), O(g(n)) is a class of functions such that f(n) ∈ O(g(n)) if there
exist M,x0 such that

|f(n)| ≤M · |g(n)| for all x > x0.

Similarly, f(n) ∈ Ω(g(n)) if there exist M,x0 such that

|f(n)| ≥M · |g(n)| for all x > x0.

If f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)), then we write f(n) ∈ Θ(g(n)).

x = (x2) M = , x0 = (1)
x = (log x) M = , x0 = (2)

x3 = (2x) M = , x0 = (3)

6.006 Intro to Algorithms Recitation 01 February 2, 2011

Python
This class uses Python 2.6. Do not use Python 3. If you’re not familiar with Python, there are
numerous resources available on the Internet:

• Python tutorial: http://docs.python.org/tutorial/

• Python libraries: http://docs.python.org/library/

• 6.006 resources page: http://courses.csail.mit.edu/6.006/spring11/resources.
shtml

Docdist code samples

Insertion sort
def insertion_sort(A):

for j in range(len(A)):
key = A[j]
insert A[j] into sorted sequence A[0..j-1]
i = j-1
while i>-1 and A[i]>key:

A[i+1] = A[i]
i = i-1

A[i+1] = key
return A

Count frequency
def count_frequency(word_list):

"""
Return a list giving pairs of form: (word,frequency)
"""
L = []
for new_word in word_list:

for entry in L:
if new_word == entry[0]:

entry[1] = entry[1] + 1
break

else:
L.append([new_word,1])

return L

http://docs.python.org/tutorial/
http://docs.python.org/library/
http://courses.csail.mit.edu/6.006/spring11/resources.shtml
http://courses.csail.mit.edu/6.006/spring11/resources.shtml

6.006 Intro to Algorithms Recitation 01 February 2, 2011

Improved count frequency
def count_frequency(word_list):

"""
Return a dictionary mapping words to frequency.
"""
D = {}
for new_word in word_list:

if new_word in D:
D[new_word] = D[new_word]+1

else:
D[new_word] = 1

return D

Get words from line list
def get_words_from_line_list(L):

"""
Parse the given list L of text lines into words.
Return list of all words found.
"""
word_list = []
for line in L:

words_in_line = get_words_from_string(line)
word_list = word_list + words_in_line

return word_list

Improved get words from line list
def get_words_from_line_list(L):

"""
Parse the given list L of text lines into words.
Return list of all words found.
"""
word_list = []
for line in L:

words_in_line = get_words_from_string(line)
word_list.extend(words_in_line)

return word_list

6.006 Intro to Algorithms Recitation 01 February 2, 2011

Inner product
def inner_product(L1,L2):

"""
Inner product between two vectors, where vectors
are represented as alphabetically sorted (word,freq) pairs.
Example: inner_product(

[["and",3],["of",2],["the",5]],
[["and",4],["in",1],["of",1],["this",2]]) = 14.0

"""
sum = 0.0
i = 0
j = 0
while i<len(L1) and j<len(L2):

L1[i:] and L2[j:] yet to be processed
if L1[i][0] == L2[j][0]:

both vectors have this word
sum += L1[i][1] * L2[j][1]
i += 1
j += 1

elif L1[i][0] < L2[j][0]:
word L1[i][0] is in L1 but not L2
i += 1

else:
word L2[j][0] is in L2 but not L1
j += 1

return sum

Improved inner product
def inner_product(D1,D2):

"""
Inner product between two vectors, where vectors
are represented as dictionaries of (word,freq) pairs.
Example: inner_product(

{"and":3,"of":2,"the":5},
{"and":4,"in":1,"of":1,"this":2}) = 14.0

"""
sum = 0.0
for key in D1:

if key in D2:
sum += D1[key] * D2[key]

return sum

