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Asymptotic analysis
Asymptotic analysis or “big O” notation is a way of describing the growth of the runtime of an
algorithm without without having to worry about different computers, compilers, or implementa-
tions.

For functions f(n), g(n), O(g(n)) is a class of functions such that f(n) ∈ O(g(n)) if there
exist M,x0 such that

|f(n)| ≤M · |g(n)| for all x > x0.

Similarly, f(n) ∈ Ω(g(n)) if there exist M,x0 such that

|f(n)| ≥M · |g(n)| for all x > x0.

If f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)), then we write f(n) ∈ Θ(g(n)).

x = (x2) M = , x0 = (1)
x = (log x) M = , x0 = (2)

x3 = (2x) M = , x0 = (3)
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Python
This class uses Python 2.6. Do not use Python 3. If you’re not familiar with Python, there are
numerous resources available on the Internet:

• Python tutorial: http://docs.python.org/tutorial/

• Python libraries: http://docs.python.org/library/

• 6.006 resources page: http://courses.csail.mit.edu/6.006/spring11/resources.
shtml

Docdist code samples

Insertion sort
def insertion_sort(A):

for j in range(len(A)):
key = A[j]
# insert A[j] into sorted sequence A[0..j-1]
i = j-1
while i>-1 and A[i]>key:

A[i+1] = A[i]
i = i-1

A[i+1] = key
return A

Count frequency
def count_frequency(word_list):

"""
Return a list giving pairs of form: (word,frequency)
"""
L = []
for new_word in word_list:

for entry in L:
if new_word == entry[0]:

entry[1] = entry[1] + 1
break

else:
L.append([new_word,1])

return L

http://docs.python.org/tutorial/
http://docs.python.org/library/
http://courses.csail.mit.edu/6.006/spring11/resources.shtml
http://courses.csail.mit.edu/6.006/spring11/resources.shtml
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Improved count frequency
def count_frequency(word_list):

"""
Return a dictionary mapping words to frequency.
"""
D = {}
for new_word in word_list:

if new_word in D:
D[new_word] = D[new_word]+1

else:
D[new_word] = 1

return D

Get words from line list
def get_words_from_line_list(L):

"""
Parse the given list L of text lines into words.
Return list of all words found.
"""
word_list = []
for line in L:

words_in_line = get_words_from_string(line)
word_list = word_list + words_in_line

return word_list

Improved get words from line list
def get_words_from_line_list(L):

"""
Parse the given list L of text lines into words.
Return list of all words found.
"""
word_list = []
for line in L:

words_in_line = get_words_from_string(line)
word_list.extend(words_in_line)

return word_list
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Inner product
def inner_product(L1,L2):

"""
Inner product between two vectors, where vectors
are represented as alphabetically sorted (word,freq) pairs.
Example: inner_product(

[["and",3],["of",2],["the",5]],
[["and",4],["in",1],["of",1],["this",2]]) = 14.0

"""
sum = 0.0
i = 0
j = 0
while i<len(L1) and j<len(L2):

# L1[i:] and L2[j:] yet to be processed
if L1[i][0] == L2[j][0]:

# both vectors have this word
sum += L1[i][1] * L2[j][1]
i += 1
j += 1

elif L1[i][0] < L2[j][0]:
# word L1[i][0] is in L1 but not L2
i += 1

else:
# word L2[j][0] is in L2 but not L1
j += 1

return sum

Improved inner product
def inner_product(D1,D2):

"""
Inner product between two vectors, where vectors
are represented as dictionaries of (word,freq) pairs.
Example: inner_product(

{"and":3,"of":2,"the":5},
{"and":4,"in":1,"of":1,"this":2}) = 14.0

"""
sum = 0.0
for key in D1:

if key in D2:
sum += D1[key] * D2[key]

return sum


