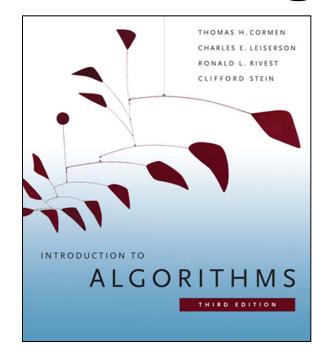
6.006

Introduction to Algorithms



Lecture 25: Complexity Prof. Erik Demaine

Today

- Reductions between problems
- Decision vs. optimization problems
- Complexity classes
 P, NP, co-NP, PSPACE, EXPTIME, ...
- NP-completeness

 $P \stackrel{?}{=} NP$

Reductions

balsamic reduction http://www.allthingsolive. ca/2011/01/pecorino-difossa-cheese-pears-andcinnamon-pear-balsamic/

> design by Gary Anderson http://en.wikipedia.org/ wiki/File:Recycle001.svg

http://cdn.zedomax.com/blog/wp-content/uploads/2010/02/reuse_reduce_recycle.jpg

How to Design an Efficient Algorithm?

- 1. Define computational problem
- 2. Abstract irrelevant detail
- 3. Reduce to a problem you learn here (or 6.046 or algorithmic literature)
- 4. Else design using "algorithmic toolbox"
- 5. Analyze algorithm's scalability
- 6. Implement & evaluate performance
- 7. Repeat (optimize, generalize)

Reductions

- Instead of solving a problem from scratch, convert your problem into a problem you already know how to solve
- <u>Examples:</u>
 - Min-product path \rightarrow shortest path (*take logs*)
 - Longest path → shortest path (negate weights)
 - Min multiple-of-5 path \rightarrow shortest path ($\approx G^5$)
 - Unweighted \rightarrow weighted shortest path (weight 1)
 - 2D path planning \rightarrow shortest path *(visibility graph)*

Polynomial-Time Reductions

- Consider two problems *A* & *B*
- **Polynomial-time reduction** $A \rightarrow B$:
 - Solution to *A* using solution to *B*
 - Polynomial-time algorithm for A,
 with free calls to subroutine to solve B
- Write A ≤_P B: "A is no harder than B" (up to polynomial overhead)

polynomial: good exponential: bad

One-Call Reductions

- Common polynomial-time reduction $A \rightarrow B$:
 - 1. Given input to problem *A*
 - 2. Polynomial-time preprocessing
 - 3. One call to solve problem *B*
 - 4. Polynomial-time postprocessing
- More interesting than "reduce any problem to basic operations in model of computation"
 - <u>Example</u>: sorting reduces to element comparisons

Decision Problems

- Decision problem = any problem whose answer is one bit: "yes" or "no"
 - *y e e i*

Hamlet (1948)

- <u>Examples:</u>
 - Do these line segments have an intersection?
 - Does this Super Mario Bros. level have a solution?
 - Does the $3 \times 3 \times 3$ Rubik's Cube always have a solution in 20 moves?
 - Given a sequence of cards, is there a Crazy Eights subsequence trick of at least 17 cards?
 - Does given weighted graph have a negative cycle?

Optimization \rightarrow **Decision**

- Any optimization problem can be converted into a decision problem
- Add input *b*: bound on optimal solution
 - Maximization problem $\Rightarrow b$ is a lower bound
 - Minimization problem $\Rightarrow b$ is an upper bound
- Examples:
 - Given sequence of cards & number b, is there a Crazy Eights trick of $\geq b$ cards?
 - Given a weighted graph, vertices s & t, number b, is there an $s \rightarrow t$ path of weight $\leq b$?

Why Decision Problems?

- <u>Meta claim</u>: Every computational problem has a decision version of roughly equal computational difficulty
- Maximization/minimization problems: binary search on bound *b* to find optimal

– Logarithmic overhead

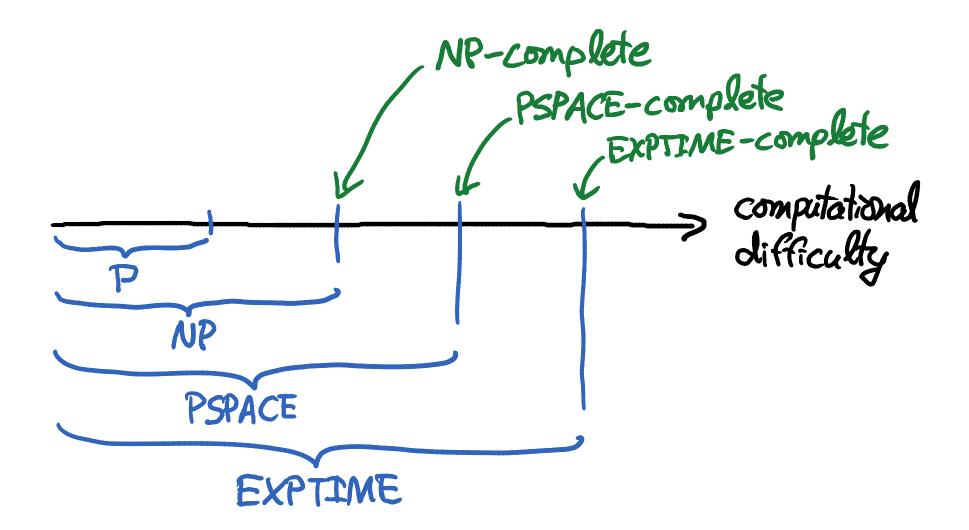
- <u>Example</u>: Is key *k* in this binary search tree?
- <u>Example</u>: Given unsorted A[1..n] and i & r, does A[i] sort to rank $\leq r$ in a sorted array?

Karp Reductions

- For decision problems *A* and *B*
- Simplest (and most common) type of polynomial-time $A \rightarrow B$ reduction:
 - 1. Given input to problem *A*
 - 2. Polynomial-time preprocessing
 - 3. One call to solve problem *B*
 - 4. Return the same answer (no postprocessing)

Richard Karp

Complexity Classes



Time Classes

- *P* = class of all decision problems solvable by polynomial-time algorithms
 -n, n², n³, ...
- **EXPTIME** = class of all decision problems solvable by exponential-time algorithms $-2^{n}, 2^{n^{2}}, 2^{n^{3}}, ...$
- In general, if $f(n) = o(g(n)/\lg n)$, then $TIME(f(n)) \subsetneq TIME(g(n))$ **(Time Hierarchy Theorem)**

Space Classes

- **PSPACE** = class of all decision problems solvable using polynomial storage space
- Example: Is there a solution to a given $n \times n \times n$ Rubik's Cube using $\leq k$ moves? -BFS X bad - DFS with bound on depth
- **EXPSPACE** = class of all decision problems solvable using exponential storage space
- Space Hierarchy Theorem: if f(n) = o(g(n)), then SPACE $(f(n)) \subsetneq$ SPACE(g(n))TIME $(f(n)) \lneq$ SPACE $(f(n)) \leq$ TIME(g(n))

Nondeterministic Polynomial time

- *NP* = class of all decision problems solvable by a "lucky" polynomial-time algorithm
 - In O(1) time, can *guess* between two choices
 - At the end, report "yes" or "no"
 - If any way to say "yes", actually return "yes" (always make right choice)
- <u>Example</u>: Is there a solution to a given $n \times n \times n$ Rubik's Cube using $\leq k$ moves?
 - Guess first move, second move, ..., *k*th move
 - Return "yes" if solved

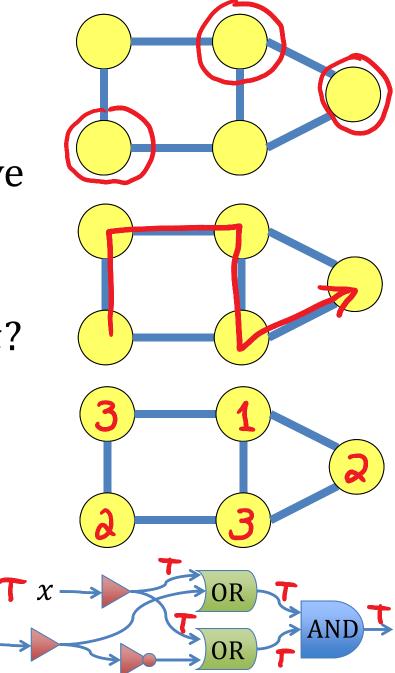
NP Remix

- Equivalently, *NP* = class of all decision problems *verifiable* in polynomial time
 - Every "yes" input has a polynomial-length
 certificate (might be very hard to find)
 - Given input and certificate, can confirm that answer is "yes" in polynomial time
- <u>Example</u>: Is there a solution to a given $n \times n \times n$ Rubik's Cube using $\leq k$ moves?

- Certificate = sequence of $\leq k$ moves to solution

NP Problems

- Given a graph, does it have vertex cover of size $\leq k$?
- Given a graph, is there a simple path of length $\geq k$?
- Given a graph, can it be colored with 3 colors?
- Given a Boolean circuit, are there inputs that make the output true?
 (SAT)

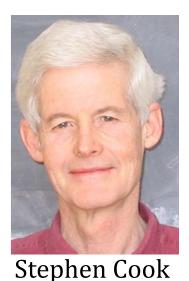


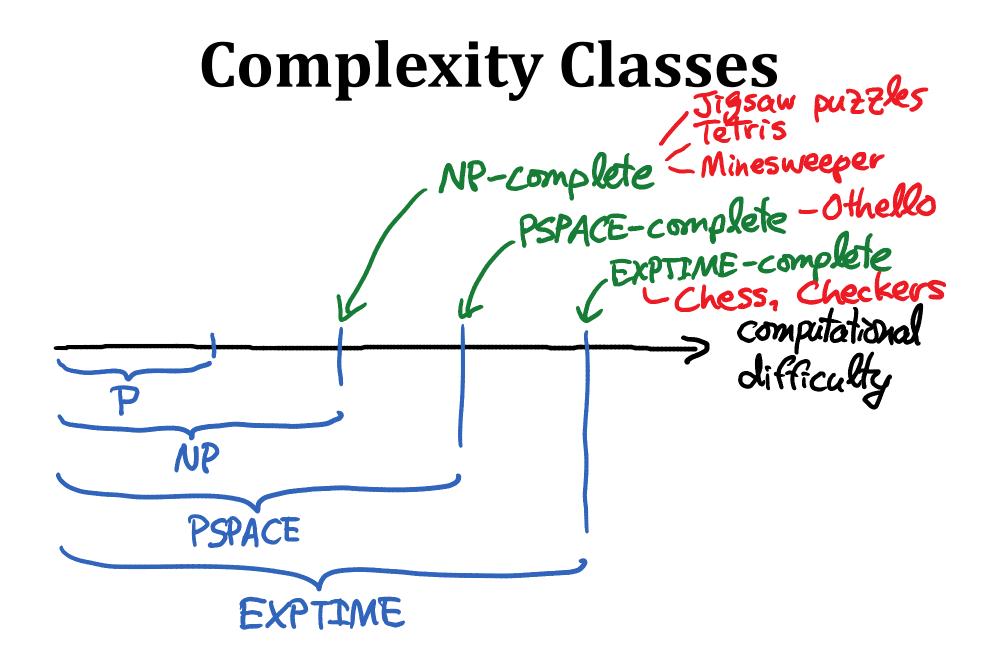
NP-Completeness

• *NP-complete* = NP problem that is at least as hard as all problems in NP

- Formally: $B \in NP$ and $A \leq_P B$ for all $A \in NP$

- Hardest problems in NP, all essentially equivalent
- If there are any problems in NP P, then NP-complete problems are among them
- If any NP-complete problem has a polynomial-time algorithm, then P = NP



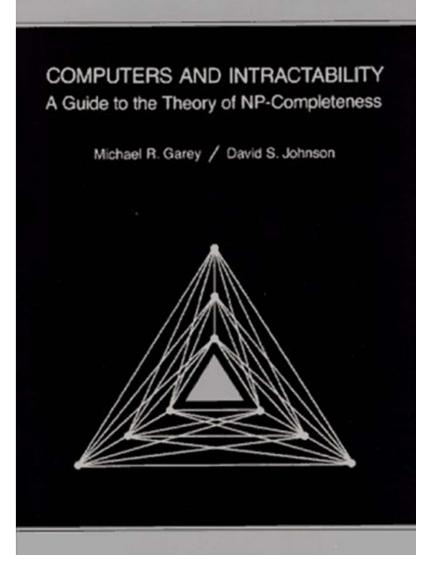


Power of Reduction

- If *A* is NP-complete, $A \leq_P B$, and $B \in NP$, then *B* is NP-complete
- Proof:
 - $-C \leq_P A$ for all $C \in NP$
 - $-A \leq_P B$
 - $-C \leq_P B$ for all $C \in NP$

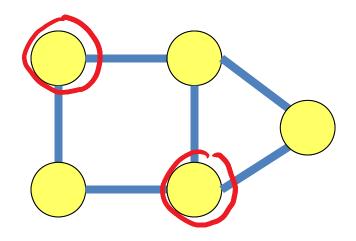
Proving NP-Completeness

- Start with any known NP-complete problem *A*
 - Given a graph, does it have vertex cover of size $\leq k$?
 - Given a graph, is there a simple path of length $\geq k$?
 - Given a graph, can it be colored with 3 colors?
 - Given a Boolean circuit, are there inputs that make the output true?
- Prove $A \leq_P B$ and $A \in NP$



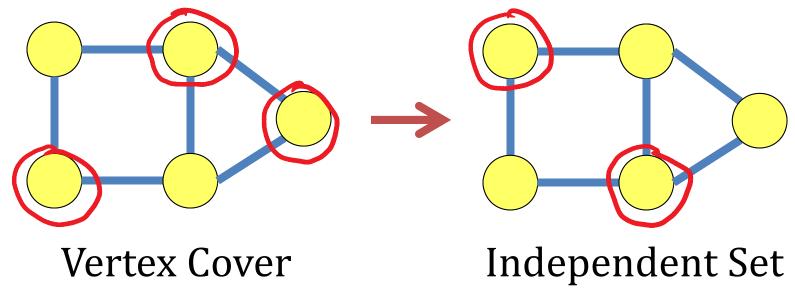
Independent Set

- *Independent set* = subset of vertices inducing no vertices
- <u>Problem</u>: Given a graph *G* and integer *k*, is there an independent set of size $\geq k$?



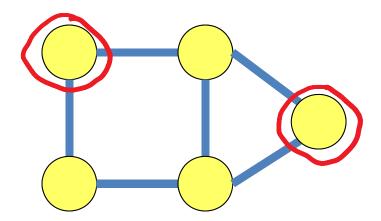
Vertex Cover \leq_P Independent Set

- *G* has a vertex cover of size $\leq k$ if and only if *G* has an independent set of size $\geq |V| - k$
- So $(G, k) \mapsto (G, |V| k)$ reduces VC \rightarrow IS
- VC is NP-complete \Rightarrow IS is NP-complete



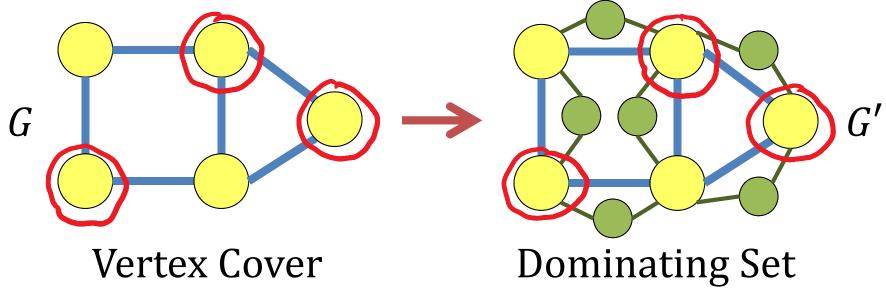
Dominating Set

- **Dominating set** = subset of vertices such that every other vertex is adjacent to someone in the subset
- <u>Problem</u>: Given a graph *G* and integer *k*, is there a dominating set of size $\leq k$?



Vertex Cover \leq_P Dominating Set

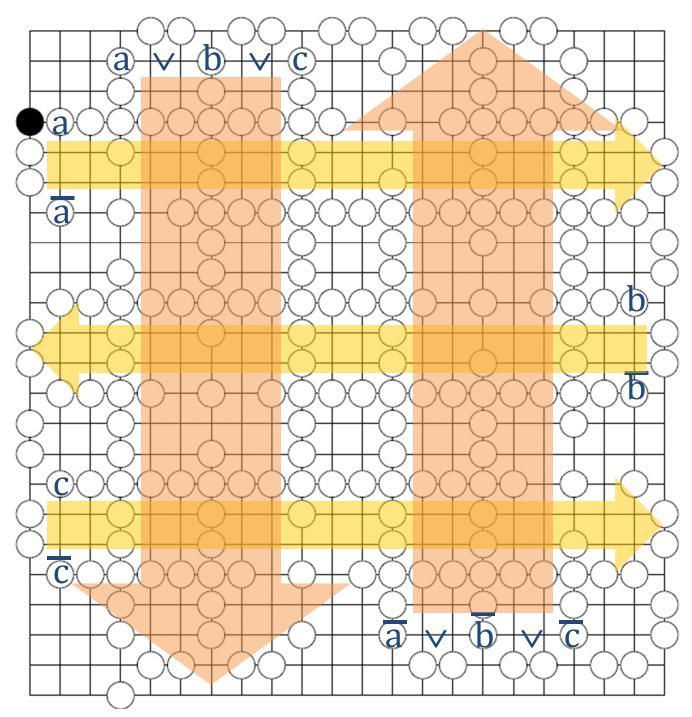
- *G* has a vertex cover of size $\leq k$ if and only if *G'* has a dominating set of size $\leq k$
- So $(G, k) \mapsto (G', k)$ reduces VC \rightarrow DS
- VC is NP-complete \Rightarrow DS is NP-complete



Phutball [Conway]

"Mate in 1" (can I win in one move?) NP-complete [Demaine, Demaine, Eppstein 2000]

 $(a \lor b \lor c)$ $\land (a \lor b \lor c)$



Bad & Good News

- Many problems are NP-complete
- Can often find approximate solutions in polynomial time
 - Within O(1) factor of optimal (e.g., Vertex Cover)
 - Within 0.0001% of optimal (e.g., Vertex Cover in planar graphs)