
6.006
Introduction	to	Algorithms

Lecture	25:	Complexity
Prof.	Erik	Demaine

Today
• Reductions	between	problems
• Decision	vs.	optimization	problems
• Complexity	classes

–P,	NP,	co‐NP,	PSPACE,	EXPTIME,	…
• NP‐completeness

Reductions

http://cdn.zedomax.com/blog/wp‐content/uploads/2010/02/reuse_reduce_recycle.jpg

design by Gary Anderson
http://en.wikipedia.org/
wiki/File:Recycle001.svg

balsamic	reduction
http://www.allthingsolive.
ca/2011/01/pecorino‐di‐
fossa‐cheese‐pears‐and‐
cinnamon‐pear‐balsamic/

How	to	Design	an	
Efficient Algorithm?

1. Define	computational problem
2. Abstract irrelevant detail
3. Reduce	to	a	problem	you	learn	here

(or	6.046	or	algorithmic	literature)
4. Else	design	using	“algorithmic	toolbox”
5. Analyze	algorithm’s	scalability
6. Implement & evaluate performance
7. Repeat	(optimize,	generalize)

Reductions
• Instead	of	solving	a	problem	from	scratch,	
convert	your	problem	into	a	problem	you	
already	know	how	to	solve

• Examples:
– Min‐product	path	 shortest	path		(take	logs)
– Longest	path	 shortest	path		(negate	weights)
– Min	multiple‐of‐5	path	 shortest	path		(ହ)
– Unweighted weighted	shortest	path		(weight	1)
– 2D	path	planning	 shortest	path		(visibility	graph)

Polynomial‐Time	Reductions

• Consider	two	problems	 &	
• Polynomial‐time	reduction :

– Solution	to	 using	solution	to	
– Polynomial‐time	algorithm	for	 ,
with	free	calls	to	subroutine	to	solve	

• Write	 ௉ :		“ is	no	harder	than	 ”
(up	to	polynomial	overhead)

One‐Call	Reductions
• Common	polynomial‐time	reduction	 :

1. Given	input	to	problem	
2. Polynomial‐time	preprocessing
3. One	call	to	solve	problem	
4. Polynomial‐time	postprocessing

• More	interesting	than	“reduce	any	problem	to	
basic	operations	in	model	of	computation”
– Example: sorting	reduces	to	element	comparisons

Decision	Problems
• Decision	problem	=	any	problem
whose	answer	is	one	bit:	“yes”	or	“no”

• Examples:
– Do	these	line	segments	have	an	intersection?
– Does	this	Super	Mario	Bros.	level	have	a	solution?
– Does	the	 Rubik’s	Cube	always	have	a	
solution	in	20	moves?

– Given	a	sequence	of	cards,	is	there	a	Crazy	Eights
subsequence	trick	of	at	least	17	cards?

– Does	given	weighted	graph	have	a	negative	cycle?

Hamlet
(1948)

Optimization	 Decision
• Any	optimization	problem	can	be	converted	
into	a	decision	problem

• Add	input	 :	bound	on	optimal	solution
– Maximization	problem	 is	a	lower	bound
– Minimization	problem	 is	an	upper	bound

• Examples:
– Given	sequence	of	cards	&	number	 ,
is	there	a	Crazy	Eights	trick	of	 cards?

– Given	a	weighted	graph,	vertices	 &	 ,	number	 ,	
is	there	an	 path	of	weight	 ?

Why	Decision	Problems?
• Meta	claim: Every	computational	problem	
has	a	decision	version	of	roughly	equal	
computational	difficulty

• Maximization/minimization	problems:	
binary	search	on	bound	 to	find	optimal
– Logarithmic	overhead

• Example: Is	key	 in	this	binary	search	tree?
• Example: Given	unsorted	 and	 &	 ,	
does	 sort	to	rank	 in	a	sorted	array?

Karp	Reductions
• For	decision	problems	 and	
• Simplest	(and	most	common)	type	of	
polynomial‐time	 reduction:
1. Given	input	to	problem	
2. Polynomial‐time	preprocessing
3. One	call	to	solve	problem	
4. Return	the	same	answer (no	postprocessing)

Richard
Karp

Complexity	Classes

Time	Classes
• P =	class	of	all	decision	problems	solvable	
by	polynomial‐time	algorithms
– ଶ ଷ

• EXPTIME =	class	of	all	decision	problems	
solvable	by	exponential‐time	algorithms
– ௡ ௡మ ௡య

• In	general,	if	 ,	then	

(Time	Hierarchy	Theorem)

Space	Classes
• PSPACE =	class	of	all	decision	problems	
solvable	using	polynomial	storage	space

• Example: Is	there	a	solution	to	a	given	
Rubik’s	Cube	using	 moves?

• EXPSPACE =	class	of	all	decision	problems	
solvable	using	exponential	storage	space

• Space	Hierarchy	Theorem:	if	
,	then	

NP
• NP =	class	of	all	decision	problems	solvable	
by	a	“lucky”	polynomial‐time	algorithm
– In	 time,	can	guess between	two	choices
– At	the	end,	report	“yes”	or	“no”
– If	any	way	to	say	“yes”,	actually	return	“yes”
(always	make	right	choice)

• Example: Is	there	a	solution	to	a	given	
Rubik’s	Cube	using	 moves?

– Guess	first	move,	second	move,	…	,	 th move
– Return	“yes”	if	solved

NP	Remix
• Equivalently,	NP =	class	of	all	decision	
problems	verifiable in	polynomial	time
– Every	“yes”	input	has	a	polynomial‐length	
certificate (might	be	very	hard	to	find)

– Given	input	and	certificate,	can	confirm	that	
answer	is	“yes”	in	polynomial	time

• Example: Is	there	a	solution	to	a	given	
Rubik’s	Cube	using	 moves?

– Certificate	=	sequence	of	 moves	to	solution

NP	Problems
• Given	a	graph,	does	it	have	
vertex	cover	of	size	 ?

• Given	a	graph,	is	there	a	
simple	path	of	length	 ?

• Given	a	graph,	can	it	be	
colored	with	3	colors?

• Given	a	Boolean	circuit,	
are	there	inputs	that
make	the	output	true? OR

AND
OR

ݔ

ݕ

NP‐Completeness
• NP‐complete =	NP	problem	that	is
at	least	as	hard	as	all	problems	in	NP
– Formally:	 and	 ௉ for	all	
– Hardest	problems	in	NP,	all	essentially	equivalent

• If	there	are	any	problems	in	 ,
then	NP‐complete	problems	are	among	them

• If	any	NP‐complete	problem	has	a	
polynomial‐time	algorithm,	then	

Stephen	Cook

Complexity	Classes

Power	of	Reduction
• If	 is	NP‐complete,	 ௉ ,	and	 ,	
then	 is	NP‐complete

• Proof:
– ௉ for	all	
– ௉

– ௉ for	all	

Proving	NP‐Completeness
• Start	with	any	known
NP‐complete	problem	
– Given	a	graph,	does	it	have	
vertex	cover	of	size	 ?

– Given	a	graph,	is	there	a	
simple	path	of	length	 ?

– Given	a	graph,	can	it	be	
colored	with	3	colors?

– Given	a	Boolean	circuit,	
are	there	inputs	that
make	the	output	true?

• Prove	 ௉ and	

Independent	Set
• Independent	set =	
subset	of	vertices	inducing	no	vertices

• Problem: Given	a	graph	 and	integer	 ,	
is	there	an	independent	set	of	size	 ?

Vertex	Cover	
Independent	Set

• has	a	vertex	cover	of	size	
if	and	only	if

has	an	independent	set	of	size	
• So	 reduces	
• VC	is	NP‐complete	 IS	is NP‐complete

Vertex	Cover Independent	Set

Dominating	Set
• Dominating	set =	subset	of	vertices
such	that	every	other	vertex	is	adjacent	to	
someone	in	the	subset

• Problem: Given	a	graph	 and	integer	 ,	
is	there	a	dominating	set	of	size	 ?

Vertex	Cover	
Dominating	Set

• has	a	vertex	cover	of	size	
if	and	only	if

has	a	dominating	set	of	size	
• So	 reduces	
• VC	is	NP‐complete	 DS	is NP‐complete

Vertex	Cover Dominating	Set

Phutball
[Conway]

“Mate	in	1”	
(can	I	win	in	
one	move?)	
NP‐complete
[Demaine,	
Demaine,	
Eppstein 2000]

a b c 

a b c 

a

a

b

b

c

c

(a	 b	 c)
 (a  b  c)

Bad	&	Good	News
• Many	problems	are	NP‐complete
• Can	often	find	approximate	solutions	in	
polynomial	time
– Within	 factor	of	optimal
(e.g.,	Vertex	Cover)

– Within	0.0001%	of	optimal
(e.g.,	Vertex	Cover	in	planar	graphs)

