
6.006
Introduction	to	Algorithms

Lecture	24:	Geometry
Prof.	Erik	Demaine



Today
• Computational	geometry
• Line‐segment	intersection

– Sweep‐line	technique
• Closest	pair	of	points

– Divide	&	conquer	strikes	back!



Motivation:	Collision	Detection
photo	by	fotios lindiakos

http://www.flickr.com/photos/fotios_lindiakos/342596118/



Motivation:	Collision	Detection
photo	by	fotios lindiakos

http://www.flickr.com/photos/fotios_lindiakos/342596118/

“GTA	4	Carmageddon!”	by	dot12321
http://www.youtube.com/watch?v=4-620xx7yTo



Line‐Segment	Intersection
• Input: line	segments	in	2D
• Goal: Find	the	 intersections



Obvious	Algorithm
for	every	pair	 ᇱ of	line	segments:
check	for	intersection



Sweep‐Line	Technique
• Idea: Sweep	a	vertical	line	from	left	to	right
• Maintain	intersection	of	line	with	input



Sweep‐Line	Intersections



Sweep‐Line	Events
• Discretize	continuous	motion	of	sweep	line
• Events	when	intersection	changes

– Segment	endpoints – Intersections



Sweep‐Line	Algorithm	Sketch

• Maintain	sweep‐line	intersection
• Maintain	priority	queue of	(possible)	event	
times ( coordinates	of	sweep	line)

• Until	queue	is	empty:
– Delete	minimum	event	time	 from	priority	queue
– Update	sweep‐line	intersection	from	 to	
– Update	possible	event	times	in	priority	queue

“Discrete‐event	simulation”



Intersection	Data	Structure
• Balanced	binary	search	tree	(e.g.,	AVL	tree)	
to	store	sorted ( ) order	of	intersections



Endpoint	Events
• For	each	line	segment	 :

– At	 :	insert (binary	search	for	neighbors	then)
– At	 :	delete



Intersection	Events?
• How	to	know	when	have	intersection	events?
• This	is	the	whole	problem!



Intersection	Events
• Compute	when	neighboring	segments	would	
intersect,	if	nothing	changes	meanwhile

• If	such	an	event	is	next,	then	it	really	happens



while	 is	not	empty:

if	 is	 :
insert	 into	 (binary	searching	with	 )

elif is	 :
delete	 from	

elif is	 ᇱ :
report	intersection	between	 and	
swap	contents	of	nodes	for	 and	 ᇱ in	

for	each	node	 changed	or	neighboring	changed	in	 :
delete	all	 events	involving	 from	
add	 &	 to	

Sweep‐Line	Algorithm



Sweep‐Line	Analysis
• Running	time	=	
• Number	of	endpoint	events	=	
• Number	of	meet	events	=
number	 of	intersections	=	size	of	output

• Running	time	=	
• Output	sensitive	algorithm:
running	time	depends	on	size	of	output

• Best	algorithm	runs	in	 time



Closest	Pair	of	Points
• Input: points	in	2D
• Goal: find	two	closest	points



Obvious	Algorithm
min(distance

for	every	pair	 of	points)



Divide‐and‐Conquer	Idea
• Initially	sort	points	by	 coordinate
• Split	points	into	left	half	and	right	half
• Recurse	on	each	half:		find	closest	pair
• return	min{closest	pair	in	each	half,

closest	pair	between	two	halves}



Closest	Pair
Between	Two	Halves?

• Let	 =	min{closest	pair	in	each	half}
• Only	interested	in	pairs	with	distance	
• Restrict	to	window	of	width	 around	middle



Closest	Pair
Between	Two	Halves

• For	each	left	point,	interested	in	
points	on	right	within	distance	

• Points	on	right	side	can’t	be	
within	 of	each	other

• So	at	most	three	right	points	to	
consider	for	each	left	point
– Ditto	for	each	right	point

• Can	compute	in	 time
by	merging	two	sorted	arrays



Divide‐and‐Conquer
presort	points	by	
def :

sort	 by	
sort	 by	
merge	and	find	closest	pair	between	two	lists
return	min{ ,	closest	distance	from	merge}



Faster	Divide‐and‐Conquer
[Shamos &	Hoey 1975]

presort	points	by	 and	 ,	and	cross	link	points
def :

map	to	ypoints &	find	closest	pair	between	lists
return	min{ ,	closest	distance	from	merge}



Other	Computational	
Geometry	Problems

• Convex	hull
• Voronoi diagram
• Triangulation
• Point	location
• Range	searching
• Motion	planning
• …

6.850:	Geometric	Computing


