6.006
Introduction to Algorithms

ALGORITHMS

Lecture 24: Geometry
Prof. Erik Demaine

Today

e Computational geometry
* Line-segment intersection
— Sweep-line technique

e Closest pair of points

— Divide & conquer strikes back!

Motivation: Collision Detection

photo by fotios lindiakos

http://www.flickr.com/photos/fotios_lindiakos/342596118/

Motivation: Collision Detection

1T

“GTA 4 Carmageddon!” by dot12321

http://www.youtube.com/watch?v=4-620xx7yTo

Line-Segment Intersection

e Input: n line segments in 2D

e (Goal: Find the k intersections

Obvious Algorithm

for every pair (£, ¢’) of line segments: O(V\a)
check for intersection

Sweep-Line Technique

e Idea: Sweep a vertical line from left to right

e Maintain intersection of line with input

-Line Intersections
e
d
b

Sweep
d
b

Sweep-Line Events

e Discretize continuous motion of sweep line

e Events when intersection changes
— Segment endpoints — Intersections

Sweep-Line Algorithm Sketch

o
gm—

| |
Maintain sweep-line intersection i

Maintain priority queue of (possible) event
times (= x coordinates of sweep line)

e Until queue is empty:

— Delete minimum event time t from priority queue
— Update sweep-line intersection from < t to > t
— Update possible event times in priority queue

“Discrete-event simulation”

Intersection Data Structure

e Balanced binary search tree (e.g., AVL tree)
to store sorted (y) order of intersections

rZass

Endpoint Events

* For each line segment £ = (£. left, £. right):

— At {.left. x: insert £ (binary search for neighbors then)
— At £.right. x: delete ¢ A

O\d\\
;//°/ ~3

BT T

Intersection Events?

e How to know when have intersection events?
e This is the whole problem!

Intersection Events

 Compute when neighboring segments would
intersect, if nothing changes meanwhile

e [f such an event is next, then it really happens

Sweep-Line Algorithm

ol

T = empty AVL tree
Q = Build—Heap({?. left. x, £. right. x for segment £})
while Q is not empty:
event = (. delete—min()

if event is L. left. x:

insert £ into T (binary searching with x = ¥£. left. x)

elif event is 4. right. x:
delete £ from T

elif event is meet(?,£'):

0:[TeF

i t'f

2.

maef mj:‘j.ﬁg 0]

report intersection between £ and ¢’
swap contents of nodes for #and ' in T
for each node £ changed or neighboring changed in T

delete all meet events involving £ from Q
add meet(#,T. pred(¥)) & meet(#,T.succ(¥)) to Q

L3

Sweep-Line Analysis

Running time = O (# events - 1g(# events))
Number of endpoint events = 2n

Number of meet events =
number k of intersections = size of output

Running time = 0((n + k) lgn) > = ((:t‘:?)

Output sensitive algorithm: = 0(% n)
running time depends on size of output

Best algorithm runs in O(nlgn + k) time

Closest Pair of Points

e Input: n pointsin 2D

e Goal: find two closest points

Obvious Algorithm

min(distance(p, q)
for every pair (p, q) of points)

30@\7“)

Divide-and-Conquer Idea

Initially sort points by x coordinate
Split points into left half and right half
Recurse on each half: find closest pair

return min{closest pair in each half,
closest pair between two halves}

Closest Pair
Between Two Halves?

e Let 6 = min{closest pair in each half}
e Only interested in pairs with distance < 6
e Restrict to window of width 24 around middle

(4o}

e T . o

Ve
.
2
@

Closest Pair
Between Two Halves

For each left point, interested in
points on right within distance o

Points on right side can’t be
within 6 of each other

So at most three right points to
consider for each left point
— Ditto for each right point

Can compute in O(n) time
by merging two sorted arrays

Divide-and-Conquer
[/ \Rg N

presort points by x

def closest—pair(points): ~
middle = (points[n/2 — 1] + points[n/2])/2 §0(%)
d = min{closest—pair(points|:n/2]), T
closest—pair(points|n/2:])} s)

sort points|points.succ(middle — §):n/2] by y

sort points|n/2: points.pred(middle + §)] by y (“5*9
merge and find closest pair between two lists O(X
return min{o, closest distance from merge}

282 TW= 2T+ 0 b v
”%3+ﬂ€9%= 8 =G A-n =0 4%* n)

Faster Divide-and- Conquer
[Shamos & Hoey 1975] 6%

presort points by x and y, and cross link points
def closest—pair(xpoints, ypoints):
middle = (xpoints|[n/2 — 1] + xpoints[n/2])/2

8 = min{closest-pair(xpoints[: n/2], —>ypomts% &T(
closest-pair(xpoints|n/2: |, »ypoints)
xpoints|xpoints.succ(middle — §): n/2] O(n)
xpoints|n/2: xpoints.pred(middle + §)] } 4
map to ypoints & find closest pair between lists } O(n)
return min{d, closest distance from merge}

T = 3T(3)+ O
=0 44 v)

Other Computational
Geometry Problems

C O nveX hllll Mark de Berg

Otfried Cheong
Marc van Kreveld
Mark Overmars

Voronoi diagram

Triangulation
Computational

Point location Geometry

Algorithms and Applications
Third Edition

Range searching
Motion planning

6.850: Geometric Computing

