Introduction to Algorithms 6.006

Jelani Nelson

Menu

- "Numerics" algorithms for operations on large numbers
 - Cryptography, simulations, etc
- Operations
 - Addition
 - Multiplication
- Division
 - Matrix multiplication

 $\begin{array}{l} 3.14159265358979323846264338327950288419\\ 7169399375105820974944592307816406286208\\ 9986280348253421170679821480865132823066\\ 4709384460955058223172535940812848111745\\ 0284102701938521105559644622948954930381\\ 9644288109756659334461284756482337867831\\ 6527120190914564856692346034861045432664\\ 8213393607260249141273724587006 \ldots \end{array}$

Division a/b

- Inversion:
 - Given positive n-digit number b (radix r)
 - Compute 1/b
 - I.e., for some $R=r^k$, compute $\lfloor R/b \rfloor$
- Iterative algorithm:
 - Start from some x_0
 - -Keep computing x_{i+1} from x_i
 - Show this converges to the answer

Newton's method

- Iterative approach to solving f(x)=0
 - In our case f(x)=1/x-b/R
- Iterative step:
 - Find a line $y=f(x_i)+f'(x_i)(x-x_i)$ tangent to f(x) at x_i
 - Set x_{i+1} to the solution of

 $f(x_i)+f'(x_i)(x-x_i) = 0$

I.e., $x_{i+1} = x_i - f(x_i)/f'(x_i)$

Division: algorithm

- Want to solve f(x)=1/x-b/R=0
- We have $f'(x) = -1/x^2$
- Iterative step $x_{i+1} = x_i f(x_i)/f'(x_i)$ yields $x_{i+1} = x_i + x_i^2 (1/x_i - b/R)$

I.e.,

$$x_{i+1} = 2x_i - x_i^2 b/R$$

- Only O(1) multiplications, shifts and subtractions
- Convergence ?

Convergence of $x_{i+1} = 2x_i - x_i^2 b/R$

- Assume $x_i = R/b$ (1+ e_i), e_i =error
- Assumptions:
 - $|e_i|$ is small
 - Ignore the round-off errors caused by the "/R" operation
- How does each iteration affect e_i ?
- $x_{i+1} = 2x_i x_i^2 b/R$
 - = $2R/b (1+e_i) [R/b (1+e_i)]^2 b/R$
 - $= R/b[2+2e_i-1-2e_i-e_i^2]$
 - $= R/b[1 e_i^2]$
 - $= R/b[1+e_{i+1}], \text{ where } e_{i+1}=-e_i^2$
- We have $|e_{i+1}| = |e_i|^2$ "quadratic" convergence

Quadratic convergence $|\mathbf{e}_{i+1}| = |\mathbf{e}_i|^2$

• If we start close enough (say, $|e_0| < 1/2$), then the convergence is very fast:

```
\begin{aligned} |e_1| &\le |e_0|^2 \\ |e_2| &\le |e_0|^{2*2} \\ \dots \\ |e_i| &\le |e_0|^{2^{i}} < 1/2^{2^{i}} \end{aligned}
```

- To make sure we get k digits of precision, we need
 - $|e_i| < 1/r^k$ $1/2^{2^i} < 1/r^k$
 - $\frac{1}{2} = \frac{1}{1} = \frac{1}{1}$
 - $i > \log_2 (k \log_2 r)$
- What if $|e_0| > 1/2$?
 - Heuristically, can apply the same algorithm
 - Analysis much more complicated
 - Does not always converge

General method

- E.g., square roots $-f(x)=x^{2} - a$ $-x_{i+1}=x_{i} - (x_{i}^{2} - a)/2 x_{i}$ $= (x_{i} + a/x_{i})/2$
- Only O(1) multiplications, subtractions and divisions

Matrix multiplication

Input: $A = [a_{ij}], B = [b_{ij}].$ **Output:** $C = [c_{ij}] = A \cdot B.$ i, j = 1, 2, ..., n.

 $c_{ij} = \sum_{k} a_{ik} b_{kj}$

Standard algorithm

for $i \leftarrow 1$ to ndo for $j \leftarrow 1$ to ndo $c_{ij} \leftarrow 0$ for $k \leftarrow 1$ to ndo $c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}$ Running time = $\Theta(n^3)$

Divide-and-conquer algorithm

IDEA: $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices: $\left(\begin{array}{c} r \, s \\ t \, u \end{array} \right) = \left(\begin{array}{c} a \, b \\ c \, d \end{array} \right) \left(\begin{array}{c} e \, f \\ g \, h \end{array} \right)$ $C = A \cdot B$ $\begin{array}{l} r = ae + bg \\ s = af + bh \\ t = ce + dg \end{array}$ 8 mults of $(n/2) \times (n/2)$ submatrices 4 adds of $(n/2) \times (n/2)$ submatrices u = cf + dh

Introduction to Algorithms

5/5/11 11

Analysis of D&C algorithm

 $n^{\log_b a} = n^{\log_2 8} = n^3 \implies \mathbf{CASE} \ \mathbf{1} \implies T(n) = \Theta(n^3).$

No better than the ordinary algorithm.

Strassen's idea (1969)
$$\begin{bmatrix} r \ s \\ t \ u \end{bmatrix} = \begin{bmatrix} a \ b \\ c \ d \end{bmatrix} \begin{bmatrix} e \ f \\ g \ h \end{bmatrix}$$

• Multiply 2×2 matrices with only 7 recursive mults.

$$\begin{array}{ll} P_{1} = a \cdot (f - h) \\ P_{2} = (a + b) \cdot h & r = P_{5} + P_{4} - P_{2} + P_{6} \\ P_{3} = (c + d) \cdot e & s = P_{1} + P_{2} \\ P_{4} = d \cdot (g - e) & t = P_{3} + P_{4} \\ P_{5} = (a + d) \cdot (e + h) & u = P_{5} + P_{1} - P_{3} - P_{7} \\ P_{6} = (b - d) \cdot (g + h) \\ P_{7} = (a - c) \cdot (e + f) \end{array}$$

Strassen's idea

• Multiply 2×2 matrices with only 7 recursive mults.

$$\begin{array}{lll} P_{1} = a \cdot (f - h) & r = P_{5} + P_{4} - P_{2} + P_{6} \\ P_{2} = (a + b) \cdot h & = (a + d)(e + h) \\ P_{3} = (c + d) \cdot e & + d(g - e) - (a + b)h \\ P_{4} = d \cdot (g - e) & + (b - d)(g + h) \\ P_{5} = (a + d) \cdot (e + h) & = ae + ah + de + dh \\ P_{6} = (b - d) \cdot (g + h) & + dg - de - ah - bh \\ P_{7} = (a - c) \cdot (e + f) & + bg + bh - dg - dh \\ & = ae + bg \end{array}$$

Strassen's algorithm

- 1.Divide: Partition A and B into (n/2)×(n/2) submatrices. Form terms to be multiplied using + and -.
- **2.***Conquer:* Perform 7 multiplications of $(n/2) \times (n/2)$ submatrices recursively.
- 3.Combine: Form C using + and on $(n/2) \times (n/2)$ submatrices.

$$T(n) = 7 T(n/2) + \Theta(n^2)$$

Analysis of Strassen

$T(n) = 7 T(n/2) + \Theta(n^2)$ $n^{\log_b a} = n^{\log_2 7} \approx n^{2.81} \implies \text{CASE 1} \implies T(n) = \Theta(n^{\log_7 7}).$

Best to date (of theoretical interest only): $\Theta(n^{2.376})$.

Introduction to Algorithms

5/5/11 16