
6.006
Introduction	to	Algorithms

Lecture	20:	Dynamic	Programming	III
Prof.	Erik	Demaine



Today
• Dynamic	programming	review
• Guessing

– Within	a	subproblem
– Using	additional	subproblems

• Parenthesization
• Knapsack
• Tetris	training



Dynamic	Programming	
History

‘Bellman	…	explained	that	he	
invented	the	name	“dynamic	
programming”	to	hide	the	fact	that	
he	was	doing	mathematical	
research	at	RAND	under	a	
Secretary	of	Defense	who	“had	a	
pathological	fear	and	hatred	of	the	
term,	research.”	He	settled	on	
“dynamic	programming”	because	it	
would	be	difficult	give	it	a	
“pejorative	meaning”	and	because	
“It	was	something	not	even	a	
Congressman	could	object	to.”	’

[John	Rust	2006]	
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.2819&rep=rep1&type=pdf

Richard	E.	Bellman
(1920–1984)

IEEE	Medal	of	Honor,	1979
http://www.amazon.com/Bellman‐Continuum‐
Collection‐Works‐Richard/dp/9971500906



What	is	Dynamic	Programming?
• “Controlled”	brute	force	/	exhaustive	search
• Key	ideas:

– Subproblems:	like	original	problem,	but	smaller
• Write	solution	to	one	subproblem in	terms	of	
solutions	to	smaller	subproblems

– Memoization:	remember	the	solution	to	
subproblems we’ve	already	solved,	and	re‐use
• Avoid	exponentials

– Guessing: if	you	don’t	know	something,	guess	it!	
(try	all	possibilities)



How	to	Dynamic	Program
Five	easy	steps!
1. Define	subproblems
2. Guess something	(part	of	solution)
3. Relate	subproblem solutions	(recurrence)
4. Recurse and	memoize (top	down)

or Build	DP	table	bottom	up
5. Solve original	problem	via	subproblems

(usually	easy)



How	to	Analyze
Dynamic	Programs

Five	easy	steps!
1. Define	subproblems count	#	subproblems
2. Guess	something count	#	choices
3. Relate	subproblem solutions

analyze	time	per	subproblem
4. DP	running	time =	#	subproblems

time	per	subproblem
5. Sometimes	additional	running	time

to	solve	original	problem



Fibonacci
Number	

1. Subproblems:		 ௞ for	
2. Guess: nothing
3. Recurrence:	 ௡ ௡ିଵ ௡ିଶ;

ଵ ଶ

4. DP	time =	#	subproblems time/subproblem

5. Original	problem	=	 ௡

photo	by	Robobobobo
http://www.flickr.com/photos/45493477@N05/4178075187/



Crazy	Eights	

1. Subproblems:		 =	length	of	longest	
trick	ending	with	card	 ,	for	

2. Guess: previous	card	 in	
3. Recurrence:		trick =	1	+	max	

trick for	 if	cards	 match}
4. DP	time =	#	subproblems time/subproblem

5. Original	problem	=
max(trick for	 )

7♣ 7♥ K♣ K♠ 8♥2♣



7♣ 7♥ K♣ K♠ 8♥2♣Crazy	Eights	

recurse	+	memoize DP	table
memo	=	{}
def trick :
if	 not	in	memo:

memo 1	+	max	
trick for	
if	cards	 match}

return	memo
return	max(
trick 	for	 )

trick	=	{}
for	 from	 to	 :
trick 1	+	max	

trick for	
if	cards	 match}

return	max(
trick 	for	 )



hieroglyphology
Michaelangelo

Sequence	Alignment
(LCS,	Edit	Distance,	etc.)

1. Subproblems:		for	 &	 :
=	cost	of	best	alignment	of	 &	

2. Guess: how	to	align/drop	 and	
3. Recurrence:		

4. DP	time =	#	subproblems time/subproblem

5. Original	problem	=	

hieroglyphology
Michaelangelo



Choosing	Subproblems
• For	string/sequence/array	 :

– Suffixes	
– Prefixes	
– Substrings	



Bellman‐Ford
(single‐source	shortest	paths)

1. Subproblems:		for	 & :
௞ =	weight	of	shortest

path	using	 edges
2. Guess: last	edge	in	this	path
3. Recurrence:		 ௞ ௞ିଵ

௞ିଵ

4. DP	time =	#	subproblems time/subproblem

5. Original	problem	=	 |௏|ିଵ for	



Floyd‐Warshall
(all‐pairs	shortest	paths)

1. Subproblems:		for	 &	 :
௞ =	weight	of	shortest	 path
using	intermediate	vertices	in	

2. Guess: is	vertex	 in	the	path?
3. Recurrence:		 ௞

௞ିଵ ௞ିଵ ௞ିଵ

4. DP	time =	#	subproblems time/subproblem

5. Original	problem	=	 ௏ for	



Bottom‐Up	Floyd‐Warshall

for	 in	 :
for	 in	 :

[ if	no	edge]
for	 from	 to	 :
for	 from	 to	 :
for	 from	 to	 :
if	



Parenthesization Problem
• Given	sequence	of	matrices	 ଵ ଶ ௡ of	
dimensions	 ଵ ଶ ଶ ଷ ௡ ௡ାଵ

• Compute	associative	product	 ଵ ଶ ௡
using	sequence	of	normal	matrix	multiplies	
in	the	order	that	minimizes	cost

• Cost	to	multiply	 with	 is	



Parenthesization Example



Parenthesization DP
1. Subproblems:		for	 :

cost	of	optimal	multiplication	of	 ଵ ௞

2. Guess: last	multiplication	to	do:
ଵ ௝ ௝ାଵ ௞

3. Recurrence:		

• Prefix/suffix	not	enough;	use	substrings



Parenthesization DP
1. Subproblems:		for	 :

cost	of	optimal	multiplication	of	 ௜ ௞

2. Guess: last	multiplication	to	do:
௜ ௝ ௝ାଵ ௞

3. Recurrence:		 ௜ ௝ାଵ ௞ାଵ

4. DP	time =	#	subproblems time/subproblem

5. Original	problem	=	



Knapsack
Problem

• Knapsack	of	integer	size	
• Items	
• Item	 has	integer	size	 ௜
and	value ௜

• Goal: Choose	subset	of	
items	of	maximum	
possible	total	value,	
subject	to	total	size	

photo	by	Erik	Demaine



Knapsack	DP
1. Subproblems:		for	 :

optimal	packing	of	items	
2. Guess: include	item	 ?
3. Recurrence:		

௜ ௜
ᇱ

• How	to	maintain	remaining	space	in	knapsack?



Guess!

http://3.bp.blogspot.com/_lrYZ590iyME/TA‐
aqU7MPnI/AAAAAAAABf8/KXABMduUVvM/s1600/Guess+Backpack.jpg



Knapsack	DP
1. Subproblems:		for	 &	 :

optimal	packing	of	items	
into	knapsack	of	size	

2. Guess: include	item	 ?
3. Recurrence:		

௜ ௜ ௜
4. DP	time =	#	subproblems time/subproblem

5. Original	problem	=	



Pseudopolynomial	Time
• running	time	is	pseudopolynomial
• In	general: polynomial	in	 and	the
integers	in	the	problem	input

• Equivalently: polynomial	in	the	input	size
if	the	integers	were	written	in	unary

• Polynomial	time	assumes	encoded	in	binary
• Knapsack	is	extremely	unlikely	to	have	a	
polynomial‐time	algorithm		(see	Lecture	25)



Tetris	Training

• Given	sequence	of	 pieces

• Given	board	of	small	width	
and	larger	height	

• Goal: Place	each	piece	in	
sequence	to	survive—
stay	within	height	 —
without	any	holes/overhang



Tetris	Training	DP
1. Subproblems:		for	 :

can	you	survive	given	pieces	 ?
2. Guess: how	to	place	piece	
3. Recurrence:		

• How	to	know	valid	moves	for	piece	 ?
• Guess!



Tetris	Training	DP
1. Subproblems:		for	

&	 ଵ ଶ ௪ :
can	you	survive	given	pieces

starting	from
columns	with heights	 ଵ ଶ ௪?

2. Guess: how	to	place	piece	
3. Recurrence:		

ଵ ௪ ଵ
ᇱ

௪
ᇱ



What’s	Next?
• Dynamic	programming	over	combinatorial	
structures	other	than	arrays

• More	examples	of	the	power	of	guessing


