6.006- Introduction to Algorithms
L_ecture 19

Dynamic Programming |1

Prof. Manolis Kellis
CLRS 15.4. 25.1, 25.2

Course VI - 6.006 — Module VI = This is it

Unit Pset Week |[Date Lecture (Tuesdays and Thursdays) Recitation (Wed and Fri)
Intro Ps1 1 |Tue Feb 01 1 | Introduction and Document Distance 1 |Python and Asymptotic Complexity
Binary Out: 2/1 Thu Feb 03 2 | Peak Finding Problem 2 |Peak Finding correctness & analysis
Search Due: Mon 2/14 2 |Tue Feb 08 3 | Scheduling and Binary Search Trees 3 |Binary Search Tree Operations
Trees HW lab: Sun 2/13 Thu Feb 10 4 | Balanced Binary Search Trees 4 |Rotations and AVL tree deletions
Hashing | PS2 Out: 2/15 3 |Tue Feb 15 5 | Hashing | : Chaining, Hash Functions 5 |Hash recipes, collisions, Python dicts
Due: Mon 2/28 Thu Feb 17 6 | Hashing Il : Table Doubling, Rolling Hash 6 |Probability review, Pattern matching
HW lab:Sun 2/27 4 |Tue Feb 22 - | President's Day - Monday Schedule - No Class - |No recitation
Thu Feb 24 7 | Hashing lll : Open Addressing 7 |Universal Hashing, Perfect Hashing
Sorting PS3. Out: 3/1 5 |Tue Mar01 | 8 | Sorting | : Insertion & Merge Sort, Master Theorem 8 |Proof of Master Theorem, Examples
Due: Mon 3/7 Thu Mar03 | 9 | Sorting Il : Heaps 9 |Heap Operations
HW lab: Sun 3/6 6 |Tue Mar 08 | 10| Sorting lll: Lower Bounds, Counting Sort, Radix Sort 10|Models of computation
Wed Mar 09 | Q1| Quiz 1 in class at 7:30pm. Covers L1-R10. Review Session on Tue 3/8 at 7:30pm.
Graphs PS4. Out: 3/10 Thu Mar 10 | 11| Searching |: Graph Representation, Depth-1st Search 11|Strongly connected components
and Due: Fri 3/18 7 |Tue Mar 15 | 12| Searching Il: Breadth-1st Search, Topological Sort 12 |Rubik's Cube Solving
Search HW lab:W 3/16 Thu Mar 17 | 13| Searching lll: Games, Network properties, Motifs 13 |Subgraph isomorphism
Shortest | PS5 8 |Tue Mar 29 | 14| Shortest Paths I: Introduction, Bellman-Ford 14 |Relaxatigeol=arithoae
Paths Out: 3/29 Thu Mar 31 | 15| Shortest Paths II: Bellman-Ford, DAGs 15 |Shortest Dynamic
Due: Mon 4/11 9 |Tue Apr 05 16| Shortest Paths Ill: Dijkstra 16 |Speeding .
HW lab:Sun 4/10 Thu Apr07 | 17] Graph applications, Genome Assembly 17|Euler To Programmlng
Dynamic | PS6 10|Tue Apr 12 18| DP I: Memoization, Fibonacci, Crazy Eights 18|Limits of dynamic programming
Program |Out: Tue 4/12 Wed Apr 13 | Q2| Quiz 2 in class at 7:30pm. Covers L11-R17. Review Session on Tue 4/13 at 7:30pm.
ming Due: Fri 4/29 Thu Apr 14 | 19] DP Il: Shortest Paths, Genome sequence alighment 19 |Edit Distance, LCS, cost functions
HW lab:W 4/27 11|Tue Apr 19 - | Patriot's Day - Monday and Tuesday Off - [No recitation
Thu Apr 21 | 20| DP IlI: Text Justification, Knapsack 20|Saving Princess Peach
12|Tue Apr 26 21] DP IV: Piano Fingering, Vertex Cover, Structured DP 21 PhonEeny
Numbers | PS7 out Thu4/28 Thu Apr 28 | 22| Numerics | - Computing on large numbers 22 |Models of computation return!
Pictures |Due: Fri5/6 13|Tue May 3 23| Numerics Il - Iterative algorithms, Newton's method 23 |Computing the nth digit of it
(NP) HW lab: Wed 5/4 Thu May 5 24| Geometry: Line sweep, Convex Hull 24 |Closest pair
14|Tue May 10 | 25] Complexity classes, and reductions 25 |Undecidability of Life
Beyond Thu May 12 | 26] Research Directions (15 mins each) + related classes
15|Finals week |[Q3] Final exam is cumulative L1-L26. Emphasis on L18-L26. Review Session on Fri 5/13 at 3pm

Dynamic Programming

Optimization technique, widely applicable

» Optimal substructure »Overlapping subproblems
Tuesday: Simple examples, alignment

— Fibonacci: top-down vs. bottom-up

— Crazy Eights: one-dimensional optimization
Today: More DP

— Alignment: Edit distance, molecular evolution

— Back to paths: All Pairs Shortest Paths DP1,DP2
Next week:

— Knapsack (shopping cart) problem

— Text Justification

— Structured DP: Vertex Cover on trees, phylogeny

Today: Dynamic programming Il

Optimal sub-structure, repeated subproblems

Review: Simple DP problems
— Fibonacci numbers: Top-down vs. bottom-up
— Crazy Eights: One-dimensional optimization

LCS, Edit Distance, Sequence alignment

— Two-dimensional optimization: Matrix/path duality
— Setting up the recurrence, Fill Matrix, Traceback
All pairs shortest paths (naive: 2". n*BelFo: n%)
— Representing solutions. Two ways to set up DP

— Matrix multiplication: ndlgn. Floyd-Warshall: n®

Hallmarks of optimization problems

Greedy algorithms

S)

1. Optimal substructure
An optimal solution to a problem (instance)
contains optimal solutions to subproblems.

o) C

2. Overlapping subproblems
A recursive solution contains a ““small’® number
of distinct subproblems repeated many times.

Q)

o) C

3. Greedy choice property
Locally optimal choices lead
to globally optimal solution

J

1. Fibonacci Computation

(not really an optimization problem,
but similar intuition applies)

Computing Fibonacci numbers: Top down

« Fibonacci numbers are defined recursively:
— Python code

def fibonacci(n):
if n==1 or n==2: return 1
return fibonacci(n-1) + fibonacci (n-2)

« Goal: Compute nth Fibonacci number.

— F(0)=1, F(1)=1, F(n)=F(n-1)+F(n-2)

- 1,1,2,3,5,8,13,21,34,55,89,144,233,377,...
* Analysis:

— T(n)=T(n-1) + T(n-2) = (...) = O(2")

fb(0) fib(1)

R0 RB(L) RBD) mBELY EB(D) RB(1) EB(1Y

Fb(0) Ab(1) fib(1)

Computing Fibonacci numbers: Bottom up

 Top-down approach
— Python code

fib table def fibonacci(n):

- fib table[l] =1
F[1j | 1 fib table[2] = 1
F[2] 1 for i in range(3,n+1l):

return fib table[n]
F[4] 3
FI51 | 5 | — Analysis: T(n) = O(n)
F[6] | 8 (o) 1)
F[7] | 13 _
F[8] 21 ﬁbwm FBD) RB(1) ABID) AB(1) (1)
F[9] | 34 m(0) A1) A1) mb(Y) AN () Ab{2) ‘)
F[10] | 55
F[11] | 89 ' £6(2) £b3) Fb(3)
?
F[12] | % ﬁb@)\
5(8) */

2. Crazy Eights

One-dimensional Optimization

Crazy8: Example computation

cli] 1L
max. 1 2 2 3 4

ScorE[I] v /u u
Input: a sequence of cards c[0]...c[n-1].
Goal: find the longest “trick subsequence”
cli4]...c[i], where i, <1, <...<I,.
Rules: DP solution:
* same rank » Bottom-up solving of all tricks ending in i
* or same suit Re-use computation by saving solutions

*oroneisan8 . Remember optimal choice and trace back

Why DP applies to Crazy Eights?

Optimal substructure:

» Optimal trick that uses card i must contain optimal trick that ends in card i.

* Proof (cut-and-paste argument): If not the case, replace sub-optimal trick
ending in i with better trick ending in i, leading to better score overall

 Contradiction: original trick was supposedly ‘optimal’

Overlapping sub-problems:

» To compute trick ending at i=5, need i=4 and i=3 and i=2 and i=1

» To compute trick ending at i=4, need i=3, i=2, i=1

 etc... =@ naive T(n)=T(n-1)+T(n-2)+T(n-3)... =» naive T(n) is exponential in n

» However, only a small number of distinct subproblems exists

cli] 7& 79 K& K& 89
SN | 2 2 3 4

score(i]

Dynamic Programming for Crazy Eights

Setting up dynamic programming

1. Find ‘'matrix’ parameterization
» One-dimensional array

2. Make sure sub-problem space is finite! (not exponential)
» Indeed, just one-dimensional array

3. Traversal order: sub-results ready when you need them
» Left-to-right ensures this

4. Recursion formula: larger problems = F(subparts)
» Scan entire sub-array completed so far O(n) each step

5. Remember choices: typically F() includes min() or max()
» Pointer back to the entry that gave us optimal choice

Then start computing
1. Systematically fill in table of results, find optimal score

2. Trace-back from optimal score, find optimal solution

Today: Dynamic programming Il
Optimal sub-structure, repeated subproblems

Review: Simple DP problems
— Fibonacci numbers: Top-down vs. bottom-up
— Crazy Eights: One-dimensional optimization

LCS, Edit Distance, Sequence alignment
— Two-dimensional optimization: Matrix/path duality
— Setting up the recurrence, Fill Matrix, Traceback

All pairs shortest paths (naive: 2". n*BelFo: n%)
— Representing solutions. Two ways to set up DP
— Matrix multiplication: ndlgn. Floyd-Warshall: n®

3. Sequence Alignment

(aka. Edit Distance, aka. LCS,
Longest common subsequence)

Two-dimensional optimization

Calculate sequence alignment score recursively

TICIA

v
s [alclelT[C
T

T |TIA|G G ClA

—p — P

* Nailve enumeration method: exponential # alignments

 Given additive scoring function:
— Constant cost of mutation / reward of match (e.g. 1,-1)
— Unit cost of insertion / deletion (e.g. -2)

* Dynamic programming approach:
— Compute all prefix-to-prefix alignments bottom-up
— Matrix M[i,j] holds best alignment score S[1..i], T[1..]]
— Express Score(i,j)=F(previously-computed scores)
— Entry M[m,n] holds optimal score for full S, T alignment
— Trace-back choices to obtain the actual alignment

Storing the score of aligning S[1..i] to T[1..j] in M(i,j)

S[1..i] i

T[..j]

R ij

Entries that may be needed for M[i,j]
Entries that MJi,j] may be needed for

The rest
A /

Reusing computation: recursion formula

S
S,

\ 4

AICIGITICIAIT|ICIA

TAGTGICA
J

T Ml

e Score of best alignment of S,[1..i] and S,[1..j] is max of:

— Score of S[1..i-1],T[1..j] + cost of gap in S
A

> MIi,j]=M[i-1,j]+gap

> MIi,j]=MI[i,j-1]+gap

S; |AICIG T
S, [TIAIGITIGIT] =
— Score of S[1..i], T[1..j-1] + cost of gap in T
v
S; lAICIG|T gap
S, [TlalglTlgl [T
— Score of S[1..i-1], T[1..j-1] + match cost of T[i] S[j] chars
V_
S; |AICIG T
S, [TlalglTlg] [T

> MIi,jl=M[i-1,j-1]+cost(‘T’/T")

(1, 2, 3) Store score of aligning (i,j) in matrix M(i,j)

S[1..i] i

T[..j]

i

~_

M[i,j] as function of previously-computed entries
MIi,j] = F(M[i-1,j], M[i,j=1], IM[i=15)=1])

Local update rules: only three entries: O(1) for each -
Total time to fill out entire matrix: O(m*n) L]

(to find max over exponential # of alignments!)

_ /
I I I I I I I I I I I I

Setting up the scoring matrix

Initialization:
 Top left: 0
Update Rule:

. . A(i,))=max{

A G T
SO BN O

A

>

}

Termination:
* Bottom right

Q

C

Setting up graph of scores

Initialization:

 Top left: 0

Update Rule:

A(l,))=max{
* A(-1, J)-2 gap
* AC1,]-1)-2 gap
A ’1_1)rr_1i1smatch

o A(-1,J-1)+1
match

}
Termination:
* Bottom right

S2

Trace-back: Path through matrix < Alignment

S1
AlC|G|TIC|A|T|C|A
=
AllA
gl | |G}
T (7l
G C/%
T T
C [c!
A TAD

Fill in entire table, remember best-choice pointers

A

4>

— =
G XO

— =~
O B0
> B >

MIi,j] gives optimal score for entire alignment S, S,

Trace-back pointers gives optimal path through M
Path through matrix corresponds 1-to-1 to alignment

Dynamic Programming for sequence alignment

Setting up dynamic programming
1. Find ‘'matrix’ parameterization
» Prefix parameterization. Score(S[1..i], T[1..]]) = F(i,))
* (i,j) only prefixes vs. (i,},k,l) all substrings =» simpler 2-d matrix
2. Make sure sub-problem space is finite! (not exponential)
« It’s just n?, quadratic (which is polynomial, not exponential)
3. Traversal order: sub-results ready vzvhen you need them
l Cols =——=3 Rows / Diags

b L>R top->bot topR->botL

4. Recursion formula: larger problems = F(subparts)
 Need formula for computing F(i,j) as function of previous results

« Single increment at a time, only look at F(i-1,j), F(i,j-1), F(i-1,}-1)
corresponding to 3 options: gap in S, gap in T, char in both

« Score in each case depends on gap/match/mismatch penalties
5. Remember choices: typically F() includes min() or max()
« Remember which of three cells (top,left,diag) led to maximum

Dynamic programming: design choices matter

* Dynamic programming yes, but details do matter
Principle: Compute next alignment based on previous alignment
Design choices: Make computation even more efficient

« Computing the score of a cell from its neighbors

F(i-1,)) - gap
— F(i,j) = max{ F(i-1,j-1) + score }
FC i, J-1) - gap

1. Parameterization: why prefixes instead of substrings
— Prefixes allow a single recursion (top-left to bottom-right)
— Substrings would need two (middle-to-outside top-down)
2. Local update rules, only look at neighboring cells:

— Linear gap penalty: only neighboring cells O(1)/cell

— Affine gap penalty: still possible with O(1)/cell

— General gap penalty: requires O(n)/cell, or O(n?)/cell

Today: Dynamic programming Il
« Optimal sub-structure, repeated subproblems
* Review: Simple DP problems

— Fibonacci numbers: Top-down vs. bottom-up
— Crazy Eights: One-dimensional optimization

« LCS, Edit Distance, Sequence alignment
— Two-dimensional optimization: Matrix/path duality
— Setting up the recurrence, Fill Matrix, Traceback

« All pairs shortest paths (naive: 2". n*BelFo: n%)
— Representing solutions. Two ways to set up DP
— Matrix multiplication: ndlgn. Floyd-Warshall: n®

All pairs shortest paths

4. Matrix Multiplication
5. Floyd-Warshall

April 14, 2011 L12.25

All-pairs shortest paths (distances)

Input: Digraph G = (V, E), where V = {1, 2,
..., N}, with edge-weight functionw : E — R.

Output: n x n matrix of shortest-path lengths
o(l,]) forall 1,] € V.

O | o ||~ | M

S N IR I Rl i >

o |l ||~ | T

SCHIECE NN RSEERCRE®)

~ | O |~ |~ |2 | T

m OO | @|>

Aoril 14, 2011 L12.26

Representing all shortest paths soln

A->D:
gg;; (A)B)E)D)

A->D
Q 4 —3 Q] A;;%\BAQA
Shortest path lengths Shortest path predecessors
AlB|[C|D]|E AlB|[C|D|E
Alo|-1]2]2]1 A (A B |(B)®B)
B o |0 |3|-1]2 B |nil|B|B|E|B
Clowo|ow| 0 || o C | nilnl| C |nil|nil
D|ow|1[5]0]3 D|nil| D|D|D|B
E|w|-212]-3]0 E |nil|D|D|D|E

Aoril 14, 2011 L12.27

All-pairs shortest path algorithms

* |dea 1: Run Bellman-Ford once for each vertex
— Time: O(V°E) = O(n*) in the worst case for dense graphs
* ldea 2: Dynamic Programming

— Build optimal paths from optimal subpaths.
(Optimization procedure... greedy doesn’t work)

— Matrix multiplication: consider paths of increasing length,
iterative over length of the path

— Floyd-Warshall: consider paths involving increasing subsets
of vertices, one more vertex at each iteration

 ldea 3: Graph re-weighing

— Johnson: graph rewiring to eliminate negative edges, then run
Dijkstra’s |V| times

Aoril 14, 2011 L12.28

Shortest path algorithms

Setting Weights | Principle Algorithm

Single source =] Greedy |BFS: O(V+E)

Single source >0 Greedy |Dikstra: O(E+VIgV)

Single source | General | |V|-1 passes | Bellman-Ford: O(V-E)

All pairs General | DP-length | Matrix Mult: O(\V°1gV)
All pairs General | DP-vertices | Floyd-Warshall: O(\/?)
All pairs General | Reweigh | Johnson: O(V-E+V?1gV)

Aoril 14, 2011 L12.29

4. Matrix Multiplication

Consider paths of increasing length
at each iteration

Aoril 14, 2011 L12.30

Intuition: Extend one hop at a time

Predecessor

vertices k
Weight of extension

considered at the
mth iteration

Costs of paths of length =m-1
already computed

<m— 1 edges

Cost[1=2]]=min, {Cost[i=2k]+EdgeWeight(k—=>])}

Already computed

Aoril 14, 2011 L12.31

Compute optimal path from optimal
subpaths

Consider the n x n weighted adjacency matrix
A = (&), where a; = w(l, J) or o, and define

d (M = weight of a shortest path from
| to] that uses at most m edges.

Claim: We have
d.©0—J0 =],
I oo if I # J;
and form=1,2,n—1,

d;i(™ = min, {d. (™1 + Ay :.

Principle of dynamic programming

Aoril 14, 2011 L12.32

Proof of claim

Relaxation!
fork <~ 1 ton
do if d;, + a, <di]
then dlij —dy + Ay <m— 1 edges

Note: No negative-weight cycles implies
o(i,]) = d; (n-1) = d; (n) — d; (n+1)_ .

Since no shortest path has more than n-1 edges.

Aoril 14, 2011 L12.33

Matrix multiplication

Compute C = A - B, where C, A, and B are n x n

matrices:

N
Cij — Zaikbkj .
k=1

Time = ®(n?) using the standard algorithm.
What if we map “+” — “min” and “” — “+7?

J
Thus, DM = DM-1) x> A
(0 0000 00)

[dentity matrix = = |20 %%

00 00 00 0)

Aoril 14, 2011

— DO — (d”(o))

L12.34

Matrix multiplication (continued)

The (min, +) multiplication is associative, and
with the real numbers, 1t forms an algebraic
structure called a closed semiring.

Consequently, we can compute

D= DO . A = Al
D@ = DI-A = A2

D(-1) — pi-2) . A — A1
yielding D1 = (&(i, j)).
Time = ®(n'n’) = ®(n*). No better than n x B-F.

Aoril 14, 2011 L12.35

Improved matrix multiplication
algorithm

Repeated squaring: A%< = AK x Ak,
Compute A%, A%, ... a2 1Dl
—

B
O(lg n) squarings
Note Aﬂ—l — An — An+1 — ... (noneed to worry about odd/even split)

Time = ®(n’lg n).

To detect negative-weight cycles, check the
diagonal for negative values in O(n) additional

time.

Aoril 14, 2011 L12.36

Shortest path algorithms

Setting Weights | Principle Algorithm

Single source =] Greedy |BFS: O(V+E)

Single source >0 Greedy |Dikstra: O(E+VIgV)

Single source | General | |V|-1 passes | Bellman-Ford: O(V-E)

All pairs General | DP-length | Matrix Mult: O(\V°1gV)
All pairs General | DP-vertices | Floyd-Warshall: O(\/?)
All pairs General | Reweigh | Johnson: O(V-E+V?1gV)

Aoril 14, 2011 L12.37

5. Floyd-Warshall algorithm

Consider one additional vertex each time

Aoril 14, 2011 L12.38

Intuition: Extend one vertex at a time

“Now considering all paths that also include E”

A|lB|C

2

D | E

A1)

-12/@
0| 3
0

mol0| w|>

8|18 |8 |8 |<
8

DO | O | O | W |

Cost[1=2]]=min, {Cost[i=2k]+EdgeWeight(k—=>])}

Already computed for all vertices <k

Aoril 14, 2011 L12.39

Floyd-Warshall algorithm

Different way of ordering the computation,
considering increasing numbers of vertices
(instead of increasing lengths of paths).

Also dynamic programming, but faster!

Define Cij(k) = weight of a shortest path from |
to | with intermediate Vertices
belonging to the set {1, 2, .

Thus, o(1, J) = C; (M) Also, C,J(O) i -

Aoril 14, 2011 L12.40

Floyd-Warshall recurrence

c..(K =min {C (k1) Ciy (k=1) Cy (k—l)}
\

Considering one additional vertex K

—~——— intermediate vertices in {1, 2, ..., k—1}
— Intermediate vertices in {1, 2, ..., k—1, k}

Aoril 14, 2011 L12.41

Pseudocode for Floyd-Warshall

Considering each vertex in order: n

for k « 1 _tO n Updating all n2 path lengths
dofori<«< 1ton

doforj<« 110N | op)workfor each
do IT Cj; > Cjy + €y

then Cij < Cik + ij

relaxation

Notes:

» Okay to omit superscripts, since extra relaxations
can’t hurt.

* Runs in ®(n?) time.

* Stmple to code.

» Efficient 1n practice.

Aoril 14, 2011 L12.42

ths through k=D

O(n?) ‘updates’ at step k, each costing O(1)

ing pa

now consider

EX

To

$

LLl . o | oo L | e . L] e~ | o '?)
Al |~ o | © Al o | © Al || O o
Ol || | e Ol ||| Ol ||| |
Ml || | e M| O | o Ml || | & ()
Lo |] o L|lo|le~|] Lol || |
<|lmm|OfAO <|m|O|A <|m|lO|Oo|uW

Wl | o] o] o W ||| | Wl]| ©
() . ~ || © A | o . €= Nl e | '0 ~
Ol | o] Ol ||| Ol]
M|~ |of | e M| ||| & M|l | |
Lo |] o L|lo]|le || Lol || |
<|lmm|OfA <|m|O|A <|m|lO|Oo|uW

W]] o | o Wl | e~ | W[e | & o~ | o ()
Al |~ || © Al ||| © Al ||| ©f
O . o~ | e O ' o= Of e | e " ~.
M| | O] | o [aa [I el IS N ||| | o
Lo |] o L|lo|le|] Lol || |
<|lmm|OfA <|o|O|A <|m|lO|Oo|uW

W] o]]] c Wl el o] | W] e | o | o ()
Al |~ || © Al ||| © Al ||| ©f
O » o~ | O] e Q| e H S| o Of | e w (N I
m . O | o m | e . o= mie| O '» o
Lo |] o L|lo|le || Lo~ || |
<|lmm|OfA <|m|O|A <|m|lO|Ao|uW

W] o] o]] c Wl] | W e | [B ()
Al |~ || © Al ||| © Al ||| ©f
O » o~ | O] e Q| e H S| o Of | e w (N I
M| | O] | o [aa [I el IS I N ||| o | o
< o | oo << | o . = | o e 'r/ o
<|lm|OfA <|m|O|A <|m|O|Oo|uW

<

Application:
Transitive closure of directed graph
(all vertices | reachable from each vertex I)

1 if there exists a path from | to |,

Compute G = 0 otherwise.

IDEA: Use Floyd-Warshall, but with (v, A) instead
of (min, +):

tij(k) = tij(k—l) v (tik(k—l) A tkj(k_l))°

Time = O(n?).

Aoril 14, 2011 L12.44

Shortest path algorithms

Setting Weights | Principle Algorithm

Single source =] Greedy |BFS: O(V+E)

Single source >0 Greedy |Dikstra: O(E+VIgV)

Single source | General | |V|-1 passes | Bellman-Ford: O(V-E)

All pairs General | DP-length | Matrix Mult: O(\V°1gV)
All pairs General | DP-vertices | Floyd-Warshall: O(\/?)
All pairs General | Reweigh | Johnson: O(V-E+V?1gV)

Aoril 14, 2011 L12.45

Today: Dynamic programming Il
« Optimal sub-structure, repeated subproblems
* Review: Simple DP problems

1. Fibonacci numbers: Top-down vs. bottom-up
2.Crazy Eights: One-dimensional optimization

» 3. LCS, Edit Distance, Sequence alignment
— Two-dimensional optimization: Matrix/path duality
— Setting up the recurrence, Fill Matrix, Traceback

« All pairs shortest paths (naive: 2". n*BelFo: n%)
4. DP by number of hops: Matrix multiplication: n3Ign.
5. DP by vertices considered: Floyd-Warshall: n3

Dynamic Programming module

Optimization technique, widely applicable

» Optimal substructure »Overlapping subproblems
Tuesday: Simple examples, alignment

— Simple examples: Fibonacci, Crazy Eights

— Alignment: Edit distance, molecular evolution
Today: More DP

— Alignment: Bound, Linear Space, Affine Gaps

— Back to paths: All Pairs Shortest Paths DP1,DP2
Next week:

— Knapsack (shopping cart) problem

— Text Justification

— Structured DP: Vertex Cover on trees, phylogeny

Happy Patriot’s Day!

Unit Pset Week |[Date Lecture (Tuesdays and Thursdays) Recitation (Wed and Fri)
Intro Ps1 1 |Tue Feb 01 1 | Introduction and Document Distance 1 |Python and Asymptotic Complexity
Binary Out: 2/1 Thu Feb 03 2 | Peak Finding Problem 2 |Peak Finding correctness & analysis
Search Due: Mon 2/14 2 |Tue Feb 08 3 | Scheduling and Binary Search Trees 3 |Binary Search Tree Operations
Trees HW lab: Sun 2/13 Thu Feb 10 4 | Balanced Binary Search Trees 4 |Rotations and AVL tree deletions
Hashing | PS2 Out: 2/15 3 |Tue Feb 15 5 | Hashing | : Chaining, Hash Functions 5 |Hash recipes, collisions, Python dicts
Due: Mon 2/28 Thu Feb 17 6 | Hashing Il : Table Doubling, Rolling Hash 6 |Probability review, Pattern matching
HW lab:Sun 2/27 4 |Tue Feb 22 - | President's Day - Monday Schedule - No Class - |No recitation
Thu Feb 24 7 | Hashing lll : Open Addressing 7 |Universal Hashing, Perfect Hashing
Sorting PS3. Out: 3/1 5 |Tue Mar01 | 8 | Sorting | : Insertion & Merge Sort, Master Theorem 8 |Proof of Master Theorem, Examples
Due: Mon 3/7 Thu Mar03 | 9 | Sorting Il : Heaps 9 |Heap Operations
HW lab: Sun 3/6 6 |Tue Mar 08 | 10| Sorting lll: Lower Bounds, Counting Sort, Radix Sort 10|Models of computation
Wed Mar 09 | Q1| Quiz 1 in class at 7:30pm. Covers L1-R10. Review Session on Tue 3/8 at 7:30pm.
Graphs PS4. Out: 3/10 Thu Mar 10 | 11| Searching |: Graph Representation, Depth-1st Search 11|Strongly connected components
and Due: Fri 3/18 7 |Tue Mar 15 | 12| Searching Il: Breadth-1st Search, Topological Sort 12 |Rubik's Cube Solving
Search HW lab:W 3/16 Thu Mar 17 | 13| Searching lll: Games, Network properties, Motifs 13 |Subgraph isomorphism
Shortest | PS5 8 |Tue Mar 29 | 14| Shortest Paths I: Introduction, Bellman-Ford 14 |Relaxatigeol=arithoae
Paths Out: 3/29 Thu Mar 31 | 15| Shortest Paths II: Bellman-Ford, DAGs 15 |Shortest Dynamic
Due: Mon 4/11 9 |Tue Apr 05 16| Shortest Paths Ill: Dijkstra 16 |Speeding .
HW lab:Sun 4/10 Thu Apr07 | 17] Graph applications, Genome Assembly 17|Euler To Programmlng
Dynamic | PS6 10|Tue Apr 12 18| DP I: Memoization, Fibonacci, Crazy Eights 18|Limits of dynamic programming
Program |Out: Tue 4/12 Wed Apr 13 | Q2| Quiz 2 in class at 7:30pm. Covers L11-R17. Review Session on Tue 4/13 at 7:30pm.
ming Due: Fri 4/29 Thu Apr 14 | 19] DP Il: Shortest Paths, Genome sequence alighment 19 |Edit Distance, LCS, cost functions
HW lab:W 4/27 11|Tue Apr 19 - | Patriot's Day - Monday and Tuesday Off - [No recitation
Thu Apr 21 | 20| DP IlI: Text Justification, Knapsack 20|Saving Princess Peach
12|Tue Apr 26 21] DP IV: Piano Fingering, Vertex Cover, Structured DP 21 PhonEeny
Numbers | PS7 out Thu4/28 Thu Apr 28 | 22| Numerics | - Computing on large numbers 22 |Models of computation return!
Pictures |Due: Fri5/6 13|Tue May 3 23| Numerics Il - Iterative algorithms, Newton's method 23 |Computing the nth digit of it
(NP) HW lab: Wed 5/4 Thu May 5 24| Geometry: Line sweep, Convex Hull 24 |Closest pair
14|Tue May 10 | 25] Complexity classes, and reductions 25 |Undecidability of Life
Beyond Thu May 12 | 26] Research Directions (15 mins each) + related classes
15|Finals week |[Q3] Final exam is cumulative L1-L26. Emphasis on L18-L26. Review Session on Fri 5/13 at 3pm

