Introduction to Algorithms 6.006

Lecture 16
Prof. Piotr Indyk

Menu

- Last week: Bellman-Ford
 - O(VE) time
 - general weights
- Today: Dijkstra
 - − O((V+E)logV) time
 - non-negative weights

Single source shortest path problem

- Problem: Given a digraph G = (V, E) with nonnegative edge-weight function w, and a node s, find $\delta(s, v)^*$ for all v in V
- Want a fast algorithm...
- Question: what if all edge weights are equal to 1?

Introduction to Algorithms

^{*}Paths can be found as well

Running time: O(V+E)

Weighted graphs

Question II: what if all edge weights are integers in the range 1...W?

Weighted graphs

Algorithm:

- Create an unweighted graph by splitting each edge with weight w into w pieces
- Run BFS

Running time: O(V+WE)

Greedy approach

IDEA: Greedy.

- 1. Maintain a set *S* of vertices whose shortest-path distances from *s* are known.
- 2. At each step add to S the vertex $v \in V S$ whose distance estimate from s is minimal.
- 3. Update the distance estimates of vertices adjacent to ν .

Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    \operatorname{do} d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V > Q is a priority queue maintaining V - S
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(Q)
        S \leftarrow S \cup \{u\}
        for each v \in Adj[u]
                                                            relaxation
             do if d[v] > d[u] + w(u, v)
                     then d[v] \leftarrow d[u] + w(u, v)
                    Implicit Decrease-Key
```

Introduction to Algorithms

8

Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Proof. Recall relaxation step:

if
$$d[v] > d[u] + w(u, v)$$
 set $d[v] \leftarrow d[u] + w(u, v)$

Correctness — Part II

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$. *Proof.*

- It suffices to show that $d[v] = \delta(s, v)$ for every $v \in V$ when v is added to S
- Suppose u is the first vertex added to S for which $d[u] \neq \delta(s, u)$. Let y be the first vertex in V S along a shortest path from s to u, and let x be its predecessor:

Correctness — Part II (continued)

- Since u is the first vertex violating the claimed invariant, we have $d[x] = \delta(s, x)$
- Since subpaths of shortest paths are shortest paths, it follows that d[y] was set to $\delta(s, x) + w(x, y) = \delta(s, y)$ just after x was added to S
- Consequently, we have $d[y] = \delta(s, y) \le \delta(s, u) \le d[u]$
- But, $d[y] \ge d[u]$ since the algorithm chose u first
- Hence $d[y] = \delta(s, y) = \delta(s, u) = d[u]$ contradiction

21

Analysis of Dijkstra

```
while Q \neq \emptyset
do u \leftarrow \text{Extract-Min}(Q)
S \leftarrow S \cup \{u\}
for each v \in Adj[u]
do if d[v] > d[u] + w(u, v)
times

Then d[v] \leftarrow d[u] + w(u, v)
Decrease-Key
```

Time = $\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$

Analysis of Dijkstra (continued)

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$
 $Q \quad T_{\text{EXTRACT-MIN}} \quad T_{\text{DECREASE-KEY}}$

Total

array
 $O(V) \quad O(1) \quad O(V^2)$

binary
heap
 $O(\lg V) \quad O(\lg V) \quad O(E \lg V)$
Fibonacci
 $O(\lg V) \quad O(1) \quad O(E + V \lg V)$
heap amortized amortized worst case

Tuesday: generic algorithm

for each
$$v \in V - \{s\}$$
 and $d[v] \leftarrow \infty$ initialization do $d[v] \leftarrow \infty$ while there is an edge $(u, v) \in E$ s. t.

$$d[v] > d[u] + w(u, v) \text{ do select one such edge "somehow" step set } d[v] \leftarrow d[u] + w(u, v)$$
endwhile endwhile

Introduction to Algorithms

How to do it in $O((V+E)\log V)$ time?

24