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* Last week: Bellman-Ford
— O(VE) time

— general weights oFe=

* Today: Dijkstra o S
— O( (V+E)logV ) time L4

— non-negative weights

Introduction to Algorithms

Wostng ,,,

4/5/11

2



ALGORITHMS

1 Single source shortest path
problem

* Problem: Given a digraph G = (V, E) with non-
negative edge-weight function w, and a node s, find
o(s, v)* forallvin J/

* Want a fast algorithm. ..

* Question: what 1f all edge weights are equal to 1 ?

a S d f

Z X C \%

*Paths can be found as well
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Running time: O(V+E)



Question II: what if all edge weights are
integers 1n the range 1...W ?
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5
Algorithm:
* Create an unweighted graph by splitting each
edge with weight w 1into w pieces

e Run BFS

Running time: O(V+WE)
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" Greedy approach

\
‘\“ T

IDEA: Greedy.

1.

2.

Maintain a set .S of vertices whose shortest-

path distances from s are known.

. U

At each step add to S the vertex veE V- §
W]

nose distance estimate from s 1s minimal.
ndate the distance estimates of vertices

ad

jacent to v.
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ALGORITHMS

Dijkstra’s algorithm

— ‘

d[s] <0
for cachveE V- {5}
do d[v] <— OO
S~
Q<V > ( is a priority queue maintaining /' — .S
while O =
do 1 < EXTRACT-MIN(Q)
S<—SU {u}
for each v € Adj|u]
do if d[v] > d[u] + w(u, v) relaxation
then d[v] < d[u] + w(u, v) step

Implicit DECREASE-KEY
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“ " Dijkstra: Example

\\\‘ Irexrixearens

I st iteration
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Dijkstra: Example

2nd iteration
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“ " Dijkstra: Example

\\\‘ Irexrixearens

3rd iteration

(0,%)7

le

(5,a)* 4 (9,d)
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“ o~ Dijkstra: Example

WY e

4th iteration
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Dijkstra: Example

7 (10,6)"
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“ o~ Dijkstra: Example

. (10,b)"

6th iteration (3.a)",
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Dijkstra: Example

7 (10,6)°
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“ o~ Dijkstra: Example

. (10,b)"

8th 1teration (3.a)",
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Dijkstra: Example

7 (10,6)"

4 (9, d)+
(10,)"

7
Shortest-path tree (3 ,a)+@ ,@
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. Correctness — Part 1

Lemma. Imitializing d[s] <— 0 and d[v] <= o for all
vE V— {s} establishes d[v] = o(s, v) forall vE T,
and this invariant 1s maintained over any sequence
of relaxation steps.

Proof. Recall relaxation step:

if d[v] > d[u] + w(u, v) set d[v] < d[u] + w(u, v)
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ALGORITHMS

“ o~ Correctness — Part I1

\
“\‘ e

Theorem. Dijkstra’s algorithm terminates with
dlvl=0(s,v)forallve V.
Proof.

e It suffices to show that d[v]| = 0(s, v) for every v € I/
when v 1s added to S

* Suppose u 1s the first vertex added to S for which
dlu] = o(s, u) . Let y be the first vertex in J'— S along a
shortest path from s to u, and let x be its predecessor:

S, just before
adding u.
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== Correctness — Part 11

r /)

N (COIltlIllled)

e Since u 1s the first vertex violating the claimed invariant,
we have d|x]| = o(s, x)

* Since subpaths of shortest paths are shortest paths, it
follows that d[y] was set to o(s, x) + w(x, ) = 0(s, ) just
after x was added to §

» Consequently, we have d|y] = 0(s, v) = 0(s, u) = d[u]

e But, d[y] = d[u] since the algorithm chose u first

* Hence d[y] = o(s, v) = 0(s, u) = d[u] - contradiction
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%E Analysis of Dijkstra

4 while O = &

do © <— EXTRACT-MIN(O)
ti or each v & Adj|u
T degree(u) do if d[v] > d[u] + w(u, v)
i times : then d[v] < d[u] + w(u, v)

DECREASE-KEY

Time = O(V) TexrractMin T O &) T DEcREASE-KEY
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¥ Analysis of Dijkstra
31 (continued)

Time = O(V) Tgxrractmin T OE) TDECREASE-KEY

0 TextrActMIN IDEcrEASEKEY — Total

array o)) O(1) O(1?)

bina

heap 0081 0(gh)  OElgh)
Fibonacci  O(lg V) O(1) O+ Vigh)

heap  amortized amortized worst case
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“ " Tuesday: generic algorithm

d[s] < 0
for eachvE V'~ {s} [ initialization

do d[v] < o
while there 1s an edge (u, v) € E s. t.

d[v] > d[u] + w(u, v) do relaxation
select one such edge “somehow” step
set d[v] < d[u] + w(u, v)
endwhile

~

How to do it in O( (V+E)logV ) time ?
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