6.006
Introduction to Algorithms

v

RONALD L. RIVEST
CLIFFORD STEIN
&

TTTTTTTTTTTTTT

ALGORITHMS

Lecture 15: Shortest Paths 11

Prof. Erik Demaine

Today

Bellman-Ford algorithm
for single-source shortest paths

Running time

Correctness

Handling negative-weight cycles
Directed acyclic graphs

Recall: Shortest Paths

e 5(u,v) = inf{w(p) : p is a path from u to v}
 5(u,v) = oo if there’s no path from u to v

e 5(u,v) = —oo ifthere’s a path from u to v
that visits a negative-weight cycle

Example:

Recall: Single-Source

Shortest Paths

 Problem: Given a directed graph ¢ = (V, E)
with edge-weight functionw : E = R, and a
source vertex s, compute 6(s,v) forallv e V

— Also want shortest-path tree represented by v.

Example: 0 1

Recall: Relaxation Algorithm

forvinV:
v.d = oo
v. T = None
s.d=0

while some edge (u,v) hasv.d > u.d + w(u, v):
pick such an edge (u, v)
relax(u, v):

ifv.d >u.d+w(u,v):
v.d =u.d+w(u,v)
V.T=U

Relaxation Algorithm Issues

* Never stop relaxing in a graph with
negative-weight cycles: infinite loop!

e A poor choice of relaxation order can
lead to exponentially many relaxations:

Bellman & Ford

A “_‘;‘-7
=
; : f“ C A o
| ok f

Richard E. Bellman

(1920-1984)
IEEE Medal of Honor, 1979

: Bellman-Continuum-
Coll W rks R chard/dp/9971500906

Lester R. Ford, Jr.

(1927-)
president of MAA, 1947-48

http://www.maa.org/aboutmaa/maaapresidents.html

Bellman-Ford Algorithm

Relaxation algorithm

“Smart” order of edge relaxations
Label edges e, e,, ..., e,

Relax in this order:

el, ez, ---,em, el, ez, ---,em, ------ ,el, 82, ---,em
(g J J . J
Y Y Y
— _
V

V| — 1 repetitions

Bellman-Ford Algorithm

forvinV:

v.d = o
v. 1w = None

s.d=20

forifrom 1 to |[V| — 1:
for (u,v) in E:
relax(u, v):

ifv.d >u.d

w(u, v):

v.d =u.d + w(u,v)

V.TT = U

u.d

v.d

w(u, v)

Bellman-Ford Example

edges ordered right to left

Bellman-Ford Example

Ghe m‘uncﬂ (

edges ordered left to right

Bellman-Ford Example

“'a)6
=5
X

O
edges ordered top down, left to right

Bellman-Ford in Practice

e Distance-vector
routing protocol

— Repeatedly relax edges
until convergence

— Relaxation is local!

e On the Internet:

— Routing Information
Protocol (RIP)

— Interior Gateway Routing
Protocol (IGRP)

»

photo by Ross Imlach, 2011
http://www.flickr.com/photos/rossimlach /5446205998 /

Bellman-Ford Algorithm with
Negative-Weight Cycle Detection

forvinV:
v.d = ©
v.T = None
s.d =0
fori from1to |V|— 1: u.d
for (u,v) in E:
relax(u, v)
for (u,v) in E: V. d
ifv.d >u.d+w(u,v):
report that a negative-weight cycle exists

w(u, v)

Bellman-Ford Analysis

for vciln V: ToTAL : O(VE>
V. — OO
v.m = None O(V)

s.d =0

forifrom 1 to |[V| — 1:
for (u,v) in E: } OE) O(VE)
relax(u, v) }0(1.)
for (u,v) in E:
ifv.d >u.d+wv): ¢OE)
report that a negative-weight cycle exists

Recall: Relaxing Is Safe

 Lemma: The relaxation algorithm maintains
the invariant that v.d = 6(s,v) forallv € V.

e Proof: By induction on the number of steps.

— Consider relax(u, v) u.d

— By induction, u.d = §(s,u)
— By triangle inequality, w(u,v)
5(s,v) <6(s,u) +6(u,v)
<u.d+w(uv) v.d

—So settingv.d = u.d + w(u, v) is “safe” m

Bellman-Ford Correctness

e Claim: After iteration i of Bellman-Ford,
v.d is at most the weight of every path from
s to v using at most i edges, forallv € V.

 Proof: By induction on i. attedges np
— Before iteration i, v.d < min{w(p) :|p|)< i — 1}
— Relaxation only decreases v. d’s = remains true

— [teration i considers all
paths with < i edges
when relaxing v's
incoming edges =

Bellman-Ford Correctness

e Theorem: If G = (V, E,w) has no negative-
weight cycles, then at the end of Bellman-
Ford,v.d = 6(s,v) forallv e V.

e Proof:

— Without negative-weight cycles,
shortest paths are always simple

— Every simple path has < |V| vertices,
so < |V| — 1 edges

— Claim = |V| — 1 iterations make v.d < 6 (s, v)
— Safety > v.d = 6(s,v) =

Bellman-Ford Correctness

e Theorem: Bellman-Ford correctly reports
negative-weight cycles reachable from s.

 Proof:

— If no negative-weight cycle, then previous theorem
implies v.d = 6 (s, v), and by triangle inequality,
3(s,v) < 6(s,u) + w(u, v), so Bellman-Ford won’t
incorrectly report a negative-weight cycle.

— If there’s a negative-weight cycle, then one of its

edges can always be relaxed (once one of its d
values becomes finite), so Bellman-Ford reports. m

Computing 6(s, v)

forvinV:
v.d = o0
v.m = None
s.d=0
forifrom 1 to |[V| — 1:
for (u,v) in E:
relax(u, v)
for j from 1 to |V|:
for (u,v) in E:

ifv.d >u.d+w(u,v):

v.d = —0o0
V.T=1U

u.d

v.d

w(u,v)

Correctness of 6(s, v)

e Theorem: After the algorithm, v.d = o (s V)

forallv e V. 3
 Proof: MQ/\\:EO
— As argued before, after i loop, every negative-
weight cycle has a relaxable edge (u, v)

— Setting v.d = —oo takes limit of relaxation
— All reachable nodes also have § (s, x) = —oo

— Path from original u to any vertex x (including u)
with 6(s,x) = —oo has at most |V | edges

— (So relaxation is impossible after j loop.) =

Why Did This Work So Well?

4 2 1
0 =1 26) o8 o o
3 M
3 1 A&
13 14 1€
14

e [t's a DAG (directed acyclic graph)
 We followed a topological sorted order

edges ordered left to right

Shortest Paths in a DAG

e Simplified Bellman-Ford: no iteration, no cycles

forvinV:
v.d = oo)

v.7m = None |
s.d =0 _J
topologically sort the vertices V
now (u,v) € E =rank(u) < rank(v) inV

foruinV: (in order)
for v in u. neighbors: }Q(E)

relax(u, v) }Q(Q

~

OQ(V+E)

Correctness in DAG

e Theorem: In a DAG, this algorithm
u.d=o(s,u)forallueV. -

e Proof: By induction on rank(u)

— Claim by induction that u.d = §(s, u)

when we hit u in outer loop sther base

A cases have
— Base case: s.d = 0 correct (no cycles) cé—:ao

— When we hit u, we’ve already hit all previous
vertices, including all vertices with edges into u

— By induction, these vertices had correct d
values when we relaxed the edgesintou =

Next Up

e Dijkstra’s algorithm
— Relax edges in a growing ball around s
— Fast: nearly linear time

— Only one pass through edges, but need
logarithmic time to pick next edge to relax

— Doesn’t work with negative edge weights

