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Today
• Bellman‐Ford	algorithm
for	single‐source	shortest	paths

• Running	time
• Correctness
• Handling	negative‐weight	cycles
• Directed	acyclic	graphs



Recall: Shortest	Paths
•
• if	there’s	no	path	from	 to	
• if	there’s	a	path	from	 to	
that	visits	a	negative‐weight	cycle	
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Recall: Single‐Source
Shortest	Paths

• Problem: Given	a	directed	graph	
with	edge‐weight	function	 ,	and	a	
source vertex	 ,	compute	 for	all	
– Also	want	shortest‐path	tree	represented	by	
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Recall: Relaxation	Algorithm

for	 in	 :

while	some	edge	 has	 :
pick	such	an	edge	
relax :

if	 :
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Relaxation	Algorithm	Issues

• Never	stop	relaxing	in	a	graph	with	
negative‐weight	cycles:	infinite	loop!

• A	poor	choice	of	relaxation	order	can
lead	to	exponentially	many	relaxations:
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Bellman	&	Ford

Richard	E.	Bellman
(1920–1984)

IEEE	Medal	of	Honor,	1979

Lester	R.	Ford,	Jr.
(1927–)

president	of	MAA,	1947–48
http://www.amazon.com/Bellman‐Continuum‐
Collection‐Works‐Richard/dp/9971500906 http://www.maa.org/aboutmaa/maaapresidents.html



Bellman‐Ford	Algorithm
• Relaxation	algorithm
• “Smart”	order	of	edge	relaxations
• Label	edges	 ଵ ଶ ௠

• Relax	in	this	order:
ଵ ଶ ௠ ଵ ଶ ௠ ଵ ଶ ௠

repetitions



for	 in	 :

for	 from	 to	 :
for	 in	 :
relax :
if	 :

Bellman‐Ford	Algorithm
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Bellman‐Ford	Example
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Bellman‐Ford	Example
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Bellman‐Ford	Example
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Bellman‐Ford	in	Practice
• Distance‐vector
routing	protocol
– Repeatedly	relax	edges	
until	convergence

– Relaxation	is	local!
• On	the	Internet:

– Routing	Information	
Protocol	(RIP)

– Interior	Gateway	Routing	
Protocol	(IGRP) photo	by	Ross	Imlach,	2011

http://www.flickr.com/photos/rossimlach/5446205998/



for	 in	 :

for	 from	 to	 :
for	 in	 :
relax

for	 in	 :
if	 :
report	that	a	negative‐weight	cycle	exists

Bellman‐Ford	Algorithm	with	
Negative‐Weight	Cycle	Detection
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for	 in	 :

for	 from	 to	 :
for	 in	 :
relax

for	 in	 :
if	 :
report	that	a	negative‐weight	cycle	exists

Bellman‐Ford	Analysis



Recall: Relaxing	Is	Safe
• Lemma: The	relaxation	algorithm	maintains	
the	invariant	that	 for	all	 .

• Proof: By	induction	on	the	number	of	steps.
– Consider	relax
– By	induction,	
– By	triangle	inequality,

– So	setting	 is	“safe”		

u

v

s



Bellman‐Ford	Correctness
• Claim: After	iteration	 of	Bellman‐Ford,

is	at	most	the	weight	of	every	path	from	
to	 using	at	most	 edges,	for	all	 .

• Proof: By	induction	on	 .
– Before	iteration	 ,	
– Relaxation	only	decreases	 ’s	 remains	true
– Iteration	 considers	all
paths	with	 edges
when	relaxing	 ’s
incoming	edges		

vs
൑ ࢏ െ ૚
edges



Bellman‐Ford	Correctness
• Theorem: If	 has	no	negative‐
weight	cycles,	then	at	the	end	of	Bellman‐
Ford,	 for	all	 .

• Proof:
– Without	negative‐weight	cycles,
shortest	paths	are	always	simple

– Every	simple	path	has	 vertices,
so	 edges

– Claim	 iterations	make	
– Safety	



Bellman‐Ford	Correctness
• Theorem: Bellman‐Ford	correctly	reports	
negative‐weight	cycles	reachable	from	 .

• Proof:
– If	no	negative‐weight	cycle,	then	previous	theorem	
implies	 ,	and	by	triangle	inequality,	

,	so	Bellman‐Ford	won’t	
incorrectly	report	a	negative‐weight	cycle.

– If	there’s	a	negative‐weight	cycle,	then	one	of	its	
edges	can	always	be	relaxed	(once	one	of	its	
values	becomes	finite),	so	Bellman‐Ford	reports.	



for	 in	 :

for	 from	 to	 :
for	 in	 :
relax

for	 from	 to	 :
for	 in	 :
if	 :

Computing	
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Correctness	of	
• Theorem: After	the	algorithm,	
for	all	 .

• Proof:
– As	argued	before,	after	 loop,	every	negative‐
weight	cycle	has	a	relaxable edge	

– Setting	 takes	limit	of	relaxation
– All	reachable	nodes	also	have	
– Path	from	original	 to	any	vertex	 (including	 )	
with	 has	at	most	 edges

– (So	relaxation	is	impossible	after	 loop.)		



Why	Did	This	Work	So	Well?

• It’s	a	DAG (directed	acyclic	graph)
• We	followed	a	topological	sorted	order

v1 v2 v3 v4 v5 v7v6

8

88

4

4 4 2 2

2 1

1
…

0 ∞ ∞ ∞ ∞ ∞ ∞

edges	ordered	left	to	right



Shortest	Paths	in	a	DAG
• Simplified	Bellman‐Ford:	no	iteration,	no	cycles

for in :

topologically	sort	the	vertices	
#	now	 in	
for	 in	 :		(in	order)

for	 in	 :
relax



Correctness	in	DAG
• Theorem: In	a	DAG,	this	algorithm	sets	

for	all	 .
• Proof: By	induction	on	rank

– Claim	by	induction	that	
when	we	hit	 in	outer	loop

– Base	case:	 correct	(no	cycles)
– When	we	hit	 ,	we’ve	already	hit	all	previous	
vertices,	including	all	vertices	with	edges	into	

– By	induction,	these	vertices	had	correct	
values	when	we	relaxed	the	edges	into	



Next	Up
• Dijkstra’s	algorithm

– Relax	edges	in	a	growing	ball	around	
– Fast:	nearly	linear	time
– Only	one	pass	through	edges,	but	need	
logarithmic	time	to	pick	next	edge	to	relax

– Doesn’t	work	with	negative	edge	weights

s


