6.006

Introduction to Algorithms

Lecture 15: Shortest Paths II Prof. Erik Demaine

Today

- Bellman-Ford algorithm for single-source shortest paths
- Running time
- Correctness
- Handling negative-weight cycles
- Directed acyclic graphs

<u>Recall:</u> Shortest Paths

- $\delta(u, v) = \inf \{w(p) : p \text{ is a path from } u \text{ to } v\}$
- $\delta(u, v) = \infty$ if there's no path from u to v
- δ(u, v) = −∞ if there's a path from u to v that visits a negative-weight cycle

Example:

<u>Recall:</u> Single-Source Shortest Paths

• <u>Problem</u>: Given a directed graph G = (V, E)with edge-weight function $w : E \to \mathbb{R}$, and a *source* vertex *s*, compute $\delta(s, v)$ for all $v \in V$

– Also want shortest-path tree represented by $v.\pi$

<u>Recall:</u> Relaxation Algorithm

for v in V: $v_{\cdot}d = \infty$ $v.\pi = None$ s.d = 0while some edge (u, v) has v.d > u.d + w(u, v): pick such an edge (u, v)u.d relax(u, v): if v.d > u.d + w(u,v): S v.d = u.d + w(u,v) $v.\pi = u$

Relaxation Algorithm Issues

- Never stop relaxing in a graph with negative-weight cycles: infinite loop!
- A poor choice of relaxation order can lead to exponentially many relaxations:

Bellman & Ford

Richard E. Bellman (1920–1984) IEEE Medal of Honor, 1979

http://www.amazon.com/Bellman-Continuum-Collection-Works-Richard/dp/9971500906 Lester R. Ford, Jr. (1927–) president of MAA, 1947–48

http://www.maa.org/aboutmaa/maaapresidents.html

Bellman-Ford Algorithm

- Relaxation algorithm
- "Smart" order of edge relaxations
- Label edges e_1, e_2, \dots, e_m
- Relax in this order:

Bellman-Ford Algorithm

for v in V: $v.d = \infty$ $v_{\cdot}\pi = None$ s.d = 0for *i* from 1 to |V| - 1: for (*u*, *v*) in *E*: relax(u, v): if v.d > u.d + w(u,v): v.d = u.d + w(u,v) $v_{\cdot}\pi = u$

Bellman-Ford Example

edges ordered right to left

Bellman-Ford Example

one round!

edges ordered left to right

Bellman-Ford in Practice

- Distance-vector routing protocol
 - Repeatedly relax edges until convergence
 - Relaxation is local!
- On the Internet:
 - Routing Information
 Protocol (RIP)
 - Interior Gateway Routing Protocol (IGRP)

Bellman-Ford Algorithm with Negative-Weight Cycle Detection

```
for v in V:
  v.d = \infty
  v.\pi = None
s.d = 0
for i from 1 to |V| - 1:
                                  u.d
  for (u, v) in E:
                                            w(u,v)
                                 S
     relax(u, v)
for (u, v) in E:
                                   12
  if v.d > u.d + w(u,v):
     report that a negative-weight cycle exists
```

Bellman-Ford Analysis

<u>Recall:</u> Relaxing Is Safe

- <u>Lemma</u>: The relaxation algorithm maintains the invariant that $v.d \ge \delta(s, v)$ for all $v \in V$.
- <u>Proof</u>: By induction on the number of steps.
 - Consider relax(u, v)
 - By induction, $u.d \ge \delta(s, u)$
 - By triangle inequality, $\delta(s, v) \le \delta(s, u) + \delta(u, v)$ $\le u.d + w(u, v)$

- So setting v.d = u.d + w(u,v) is "safe"

Bellman-Ford Correctness

- <u>Claim</u>: After iteration *i* of Bellman-Ford, *v*. *d* is at most the weight of every path from *s* to *v* using at most *i* edges, for all $v \in V$.
- <u>Proof</u>: By induction on *i*.
 - Before iteration *i*, *v*. $d \le \min\{w(p) : (p) \le i 1\}$
 - Relaxation only decreases v.d's \Rightarrow remains true
 - Iteration *i* considers all paths with ≤ *i* edges when relaxing *v*'s incoming edges ■

#edges in P

Bellman-Ford Correctness

- <u>Theorem</u>: If G = (V, E, w) has no negativeweight cycles, then at the end of Bellman-Ford, $v. d = \delta(s, v)$ for all $v \in V$.
- <u>Proof:</u>
 - Without negative-weight cycles, shortest paths are always simple
 - Every simple path has $\leq |V|$ vertices, so $\leq |V| - 1$ edges
 - $\text{Claim} \Rightarrow |V| 1 \text{ iterations make } v.d \leq \delta(s, v)$
 - $-\operatorname{Safety} \Longrightarrow v.d \ge \delta(s,v) \quad \blacksquare$

Bellman-Ford Correctness

• <u>Theorem</u>: Bellman-Ford correctly reports negative-weight cycles reachable from *s*.

• <u>Proof:</u>

- If no negative-weight cycle, then previous theorem implies $v.d = \delta(s, v)$, and by triangle inequality, $\delta(s, v) \le \delta(s, u) + w(u, v)$, so Bellman-Ford won't incorrectly report a negative-weight cycle.
- If there's a negative-weight cycle, then one of its edges can always be relaxed (once one of its *d* values becomes finite), so Bellman-Ford reports.

Computing $\delta(s, v)$

```
for v in V:
  v.d = \infty
   v.\pi = None
s.d = 0
for i from 1 to |V| - 1:
  for (u, v) in E:
     relax(u, v)
for j from 1 to |V|:
  for (u, v) in E:
     if v.d > u.d + w(u,v):
         v.d = -\infty
        v.\pi = u
```


Correctness of $\delta(s, v)$

- <u>Theorem</u>: After the algorithm, $v.d = \delta(s, v)$ for all $v \in V$.
- <u>Proof:</u>
 - As argued before, after i loop, every negativeweight cycle has a relaxable edge (u, v)
 - Setting $v.d = -\infty$ takes limit of relaxation
 - All reachable nodes also have $\delta(s, x) = -\infty$
 - Path from original u to any vertex x (including u) with $\delta(s, x) = -\infty$ has at most |V| edges
 - (So relaxation is impossible after *j* loop.) ■

Why Did This Work So Well?

- It's a DAG (directed acyclic graph)
- We followed a **topological sorted order**

edges ordered left to right

Shortest Paths in a DAG

• Simplified Bellman-Ford: no iteration, no cycles

Correctness in DAG

- <u>Theorem</u>: In a DAG, this algorithm sets $u.d = \delta(s, u)$ for all $u \in V$.
- <u>Proof</u>: By induction on rank(u)
 - Claim by induction that $u.d = \delta(s, u)$ when we hit u in outer loop
 - Base case: s.d = 0 correct (no cycles)
 - When we hit *u*, we've already hit all previous vertices, including all vertices with edges into *u*
 - By induction, these vertices had correct *d* values when we relaxed the edges into *u*

Next Up

• Dijkstra's algorithm

- Relax edges in a growing ball around s
- Fast: nearly linear time
- Only one pass through edges, but need logarithmic time to pick next edge to relax
- Doesn't work with negative edge weights

