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Today
• Shortest	paths
• Negative‐weight	cycles
• Triangle	inequality
• Relaxation	algorithm
• Optimal	substructure



Shortest	Paths



Shortest	Paths



How	Long	Is	Your	Path?
• Directed	graph	
• Edge‐weight	function	
• Path	 ଵ ଶ ௞

• Weight of	 ,	denoted	 ,	is
ଵ ଶ ଶ ଷ ௞ିଵ ௞
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My	Path	Is	Shorter	Than	Yours

• A	shortest	path	from	 to	 is	a	path	 of	
minimum	possible	weight	 from	 to	

• The	shortest‐path	weight	 from	 to	
is	the	weight	of	any	such	shortest	path:
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You	Can’t	Get	There	From	Here



You	Can’t	Get	There	From	Here

• If	there	is	no	path	from	 to	 ,	then	neither	
is	there	a	shortest path	from	 to	

• Define	 in	this	case
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The	More	I	Walk,
The	Less	It	Takes

• A	shortest	path	from	 to	 might	not	exist,	
even	though	there	is	a	path	from	 to	

• Negative‐weight	cycle
ଵ ଶ ௞ ଵ

has
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The	More	I	Walk,
The	Less	It	Takes

• Define	 if	there’s	a	path	from	
to	 that	visits	a	negative‐weight	cycle	

•
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Single‐Source	Shortest	Paths
• Problem: Given	a	directed	graph	
with	edge‐weight	function	 ,	and	a	
source vertex	 ,	compute	 for	all	
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Shortest‐Path	Tree
• Ideally	also	compute	a	shortest‐path	tree
containing	a	shortest	path	from	source	 to	
every	 (assuming	shortest	paths	exist)
– Represent	by	storing	parent for	each	
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Shortest‐Path	Trees

• Ideally	also	compute	the	union	of	one	
shortest	path	from	source	 to	every	 ,	
which	forms	the	shortest‐path	tree

bicycle	travel	in
San	Francisco	area

bicycle	travel	in
Seattle	area

Brandon	Martin‐Anderson
&	Nino	Walker

http://graphserver.sourceforge.net/gallery.html



Single‐Source	Shortest‐Path	
Algorithms

• Relaxation	algorithm (TODAY)
– Framework	for	most	shortest‐path	algorithms
– Not	necessarily	efficient

• Bellman‐Ford	algorithm (LECTURE	15)
– Deals	with	negative	weights
– Slow	but	polynomial

• Dijkstra’s algorithm (LECTURE	16)
– Fast	(nearly	linear	time)
– Requires	nonnegative	weights



Brute‐Force	Algorithm

• Number	of	paths	can	be	infinite:

return encountered with smallest 
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Brute‐Force	Algorithm

• Number	of	paths	can	be	exponential:

##	assume	no	negative‐weight	cycles

return encountered with smallest 

s vnv1 v2 …
=	t

௡ paths	from	 to	 ௡;	 vertices	and	edges



Relaxation
• In	general,	refers	to	letting	a	solution	
(temporarily)	violate	a	constraint,	and	
trying	to	fix	these	violations

Magic Geek
http://www.youtube.com/	

watch?v=Y12daEZTUYo



Triangle	Inequality
• Theorem: For	all	 ,	we	have

• Proof: Shortest	path	from	 to	 is	at	most	
any	particular	path,	e.g.,	the	blue	chain.		
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Relaxation	Approach
• Maintain	distance	estimate
for	each	

• Goal: for	all	
• Invariant:
• Initialization:

• Repeatedly	improve	estimates	toward	goal,	
by	aiming	to	achieve	triangle	inequality

in :



Edge	Relaxation
• Consider	an	edge	

• [triangle	ineq.]
[candidate	path]
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Relaxation	Algorithm
for	 in	 :

while	some	edge	 has	 :
pick	such	an	edge	
relax :

if	 :
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Relaxation	Algorithm
with	Shortest‐Path	Tree

for	 in	 :

while	some	edge	 has	 :
pick	such	an	edge	
relax :

if	 :
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Relaxing	Is	Safe
• Lemma: The	relaxation	algorithm	maintains	
the	invariant	that	 for	all	 .

• Proof: By	induction	on	the	number	of	steps.
– Consider	relax
– By	induction,	
– By	triangle	inequality,

– So	setting	 is	“safe”		
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Infinite	Relaxation
• If	a	negative‐weight	cycle	is	reachable	from	 ,	
then	relaxation	can	never	terminate
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Long	Relaxation
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Long	Relaxation

• Analysis:
– relax ଵ ଶ

– relax ଶ ଷ

– recurse	on	 ଷ ସ ௡

– relax ଵ ଷ

– recurse	on	 ଷ ସ ௡
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Are	You	Sure
This	Is	a	Good	Idea?

• Bellman‐Ford	algorithm: (LECTURE	15)
– Relax	all	of	the	edges
– Repeat	 times
– Polynomial	time!

• Dijkstra’s algorithm: (LECTURE	16)
– Relax	edges	in	a	growing	ball	around	
– Nearly	linear	time!
– (but	doesn’t	work	with	negative	edge	weights)



Optimal	Substructure
• Lemma: A	subpath of	a	shortest	path	is	a	
shortest	path	(between	its	endpoints).

• Proof: By	contradiction.
– If	there	were	a	shorter	path	from	 to	 ,
then	we	could	shortcut the	path	from	 to	 ,	
contradicting	that	we	had	a	shortest	path.		
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