
6 006 Introduction to Algorithms6.006- Introduction to Algorithms

Lecture 11 - Searching I
P f M li K lliProf. Manolis Kellis

CLRS 22.1-22.3, B.4

Unit #4 – Games, Graphs, Searching, Networks

2

Unit #4 Overview: Searchingg
Today: Introduction to Games and Graphs
• Rubik’s cube, Pocket cube, Game space
• Graph definitions, representation, searchingp p g
Tuesday: Graph algorithms and analysis
• Breadth First Search Depth First Search• Breadth First Search, Depth First Search
• Queues, Stacks, Augmentation, Topological sort
Thursday: Networks in biology and real world
• Network/node properties, metrics, motifs, clusters
• Dynamic processes, epidemics, growth, resilience

Graph Applicationsp pp

• WebWeb
– crawling

• Social Network• Social Network
– friend finder

• Computer Networks• Computer Networks
– internet routing

ti it– connectivity
• Game states

bik b h– rubik’s cube, chess

Today: Solving Rubik’s cubeToday: Solving Rubik s cube…

youtube:
5inASBBYpWU

… and finding God’s number

Cracking the 3x3 Rubik’s cube
• Increasingly efficient algorithms exist for solving the

cube using a fixed set of moves
– 1981: 52 moves. Today: <30 moves

• In practice, shortcuts may be possible!
– Human intuition can reveal patterns, not follow fixed algorithm

• How hard is Rubik’s cube:
– Size of game space: count distinct positions, number of edges
– 43,252,003,274,489,856,000 positions (4.3*1019)

• How big is 43 quadrillion?
– Number of atoms in the universe: 1081

C l it f h (Sh b) 1047– Complexity of chess (Shannon number): ~1047

– 19x19 go: #turns ~1048 ; 1010^48<#games<~1010^171

Searching for God’s number

Date
Lower
bound

Upper
bound

Gap

J l 1981 18 52 34

• God’s algorithm would
always use the minimal

b fJuly, 1981 18 52 34
April, 1992 18 42 24
May, 1992 18 39 21

number of moves
• God’s number: maximum

number of moves neededMay, 1992 18 37 19
January, 1995 18 29 11
January 1995 20 29 9

number of moves needed
by an optimal algorithm

• Upper bound nearing inJanuary, 1995 20 29 9
December, 2005 20 28 8
April, 2006 20 27 7

Upper bound nearing in
by increasingly faster
general algorithms

May, 2007 20 26 6
March, 2008 20 25 5
April, 2008 20 23 3

• Lower bound given by
hardest known positions
requiring most moves

August, 2008 20 22 2
July, 2010 20 20 0

requiring most moves
• The two met just last year!

So, how did they do it? (™)

• Start with 43,252,003,274,489,856,000 positions
• Partition into 2.2 billion sets, each withPartition into 2.2 billion sets, each with

19.5 billion positions, solve each separately
• Reduce 2 2 billion sets to 55 8 million byReduce 2.2 billion sets to 55.8 million by

symmetry & set cover
• Solve each set of 19 5 billion positions• Solve each set of 19.5 billion positions

in 20 seconds or less each
• With only 20 seconds to solve each set of 19 5• With only 20 seconds to solve each set of 19.5

billion positions, solve each of 2.2 billion sets
Call Google and comp te 35 CPU ears in a eek• Call Google and compute 35 CPU years in a week

cube20.org

How many ‘hardest’
positions exist?

Distance Count of Positions
0 1
1 18
2 243positions exist?

• 18 is the most frequent min

2 243
3 3,240
4 43,239
5 574,908

number of required moves
• Relatively few 20-away

5 574,908
6 7,618,438
7 100,803,036
8 1,332,343,288y y

positions exist
• No position requires 21 moves!

9 17,596,479,795
10 232,248,063,316
11 3,063,288,809,012p q
12 40,374,425,656,248
13 531,653,418,284,628
14 6,989,320,578,825,350
15 91 365 146 187 124 300

• The ‘hardest’
15 91,365,146,187,124,300
16 ~1,100,000,000,000,000,000
17 ~12,000,000,000,000,000,000
18 ~29,000,000,000,000,000,000

position for the
author’s solver

18 29,000,000,000,000,000,000
19 ~1,500,000,000,000,000,000
20 ~300,000,000
21 Nonecube20.org

Representing space of solutionsRepresenting space of solutions

2x2 Rubik’s cube

Pocket Cube

• 2  2  2 Rubik’s cube
• Start with any colors
• Moves are quarter

turns of any face
• “Solve” by making

each side one color

Configuration Graphg p

• One vertex for each state
• One edge for each move from a vertexOne edge for each move from a vertex

– 6 faces to twist
3 t i i l t t i t (1/4 2/4 3/4)– 3 nontrivial ways to twist (1/4, 2/4, 3/4)

– So, 18 edges out of each state
• Solve cube by finding a path (of moves)

from initial state (vertex) to “solved” state

Combinatorics

• State for each arrangement and orientation of 8
cubelets

8 cubelets in each position: 8! Possibilities– 8 cubelets in each position: 8! Possibilities
– Each cube has 3 orientations: 38 Possibilities
– Total: 8!*38= 264 539 320 verticesTotal: 8! 3 264,539,320 vertices

• But divide out 24 orientations of whole cube
• And there are three separate connected p

components (twist one cube out of place 3
ways)

• Result: 3 674 160 states to search• Result: 3,674,160 states to search

Graph formalizationGraph formalization

Definitions and representation
a

b c

Graph Definitionsp

• G=(V,E)
• V a set of vertices

usually number denoted by n– usually number denoted by n
• E V  V a set of edges (pairs of vertices)

– usually number denoted by my y
– note m < n(n-1) = O(n2)

• Flavors:
i d di d h– pay attention to order: directed graph

– ignore order: undirected graph
• Then only n(n-1)/2 possible edges• Then only n(n-1)/2 possible edges

Graph Examplesp p

• Undirected • Directed
• V={a,b,c,d}
• E={{a,b}, {a,c}, {b,c},

• V = {a,b,c}
• E = {(a,c), (a,b) (b,c),E {{a,b}, {a,c}, {b,c},

{b,d}, {c,d}}
E {(a,c), (a,b) (b,c),
(c,b)}

a b
a

d
b c

c d

Graph Representationp p

• To solve graph problems, must examine graph
• So need to represent in computer
• Four representations with pros/cons

1. Adjacency lists (of neighbors of each vertex)j y (g)
2. Incidence lists (of edges from each vertex)
3. Adjacency matrix (of which pairs are adjacent)j y (p j)
4. Implicit representation (as neighbor function)

List vs matrix representationsList vs. matrix representations

Adjacency list
Adjacency matrixj y

Space/time tradeoffs

1. Adjacency Listsj y

• For each vertex v, list its neighbors (vertices to
which it is connected by an edge)
– Array A of ||V|| linked lists
– For vV, list A[v] stores neighbors {u | (v,u) 

E}E}
– Directed graph only stores outgoing neighbors
– Undirected graph stores edge in two places

• In python, A[v] can be hash table
– v any hashable object

Adjacency list examplej y p

a a c b /

b c /
b c

c

c /

b /b /

2. Adjacency Matrixj y

• assume V={1, …, n}
• matrix A=(aij) is n  nmatrix A (aij) is n  n

– row i, column j
1 if (i j) E– aij = 1 if (i,j)  E

– aij = 0 otherwise
• (store as, e.g., array of arrays)

Adjacency Matrix Examplej y p

1 2 3

0 1 1 1
1

0 1 1 1

0 0 1 2

0 1 0 3
2 3

Graphs and Matrix Algebrap g

• can treat adjacency matrix as matrix
• e.g., A2 = length-2 paths between vertices ..e.g., A length 2 paths between vertices ..
• [note: Ak for large k is related to pagerank

of vertices]of vertices]
• undirected graph  symmetric matrix

[i l f l f h• [eigenvalues useful for many graph
algorithms, see Lecture 13 for examples]

Representation Tradeoffs: Spacep p

• Adjacency lists use one list node per edge
– And two machine words per node
– So space is mw) bits (m=#edges, w=word

size)
• Adjacency matrix uses n2 entriesAdjacency matrix uses n entries

– But each entry can be just one bit
– So n2) bits)

• Matrix better only for very dense graphs
– m near n2

– (Google can’t use matrix)

Representation Tradeoffs: Timep

• Add edge
– both data structures are O(1)

• Check “is there an edge from u to v”?• Check is there an edge from u to v ?
– matrix is O(1)
– adjacency list must be scannedj y

• Visit all neighbors of v (very common)
– adjacency list is (neighbors)

i i ()– matrix is (n)
• Remove edge

– like find + addlike find + add

Other representationsOther representations

Object-oriented, implicit

Object Oriented Variantsj

• object for each vertex uobject for each vertex u
– u.neighbors is list of neighbors for u

• incidence list: object for each edge e• incidence list: object for each edge e
– u.edges = list of outgoing edges from u

e object has endpoints e head and e tail– e object has endpoints e.head and e.tail

• can store additional info per vertex or edge
without hashingwithout hashing

Implicit representationp p

• Don’t store graph at all
• Implement function Adj(u) that returns listImplement function Adj(u) that returns list

of neighbors or edges of u
• Requires no space use it as you need itRequires no space, use it as you need it
• And may be very efficient

R bik’ b• e.g., Rubik’s cube

Back to the Rubik’s cube gameBack to the Rubik s cube game

Searching graphs

Searching for a solution pathg p

1 t

6 neighbors
27 two-away

1 turn

How big is the space?g p

• Graph algorithms allow us explore space
– Nodes: configurations
– Edges: moves between themg
– Paths to ‘solved’ configuration: solutions

The lay of the
l d (h)

distance 90° 90° and 180°
0 1 1land (geography)

• 6 vertices reachable by

0 1 1
1 6 9
2 27 54y

one 90° turn
• 9 vertices reachable by

3 120 321
4 534 1847
5 2,256 9,992

one 90° or 180° turn
• To reach furthest node,

11 14 d d

, ,
6 8,969 50,136
7 33,058 227,526
8 114 149 870 07211 or 14 moves needed 8 114,149 870,072
9 360,508 1,887,748
10 930,588 623,800
11 1,350,852 2,644
12 782,536
13 90,280,
14 276

diameter

Unit #4 Overview: Searchingg
Today: Introduction to Games and Graphs
• Rubik’s cube, Pocket cube, Game space
• Graph definitions, representation, searchingp p g
Tuesday: Graph algorithms and analysis
• Breadth First Search Depth First Search• Breadth First Search, Depth First Search
• Queues, Stacks, Augmentation, Topological sort
Thursday: Networks in biology and real world
• Network/node properties, metrics, motifs, clusters
• Dynamic processes, epidemics, growth, resilience

Unit #4 – Games, Graphs, Searching, Networks

33

Conclude

• Graphs: fundamental data structure
– Directed and undirected

4 ibl i• 4 possible representations
• Basic methods of graph search

• Next time:
Formalize BFS and DFS– Formalize BFS and DFS

– Runtime analysis
– ApplicationsApplications

Graph Searching AlgorithmsGraph Searching Algorithms

We want to get from current Rubik
state to “solved” state
How do we explore?

Breadth First Search
• start with vertex v
• list all its neighbors (distance 1)• list all its neighbors (distance 1)
• then all their neighbors (distance 2)
• etc.etc.

• algorithm starting at s:
– define frontier F
– initially F={s}
– repeat F=all neighbors of vertices in F
– until all vertices found

Depth First Searchp
• Like exploring a maze

F t t t th• From current vertex, move to another
• Until you get stuck

h b k k ill fi d l• Then backtrack till you find a new place to
explore

“l ft h d” l• e.g “left-hand” rule

Problem: Cyclesy

• What happens if unknowingly revisit a
vertex?

• BFS: get wrong notion of distance
• DFS: go in circlesDFS: go in circles
• Solution: mark vertices

BFS if ’ i b f i– BFS: if you’ve seen it before, ignore
– DFS: if you’ve seen it before, back up

