6.006- Introduction to Algorithms

Lecture 11 - Searching |
Prof. Manolis Kellis

CLRS 22.1-22.3,B.4

Unit #4 — Games, Graphs, Searching, Networks

Unit Pset Week |[Date Lecture (Tuesdays and Thursdays) Recitation (Wed and Fri)
Intro PS1 1 |Tue Feb 01 1 | Introduction and Document Distance 1 |Python and Asymptotic Complexity
Binary Out: 2/1 Thu Feb 03 2 | Peak Finding Problem 2 |Peak Finding correctness & analysis
Search Due: Mon 2/14 2 |Tue Feb 08 3 | Scheduling and Binary Search Trees 3 |Binary Search Tree Operations
Trees HW lab: Sun 2/13 Thu Feb 10 4 | Balanced Binary Search Trees 4 |Rotations and AVL tree deletions
Hashing | PS2 Out: 2/15 3 |Tue Feb 15 5 | Hashing | : Chaining, Hash Functions 5 |Hash recipes, collisions, Python dicts
Due: Mon 2/28 Thu Feb 17 6 | Hashing Il : Table Doubling, Rolling Hash 6 |Probability review, Pattern matching
HW lab:Sun 2/27 4 |Tue Feb 22 - | President's Day - Monday Schedule - No Class - |No recitation
Thu Feb 24 7 | Hashing lll : Open Addressing 7 |Universal Hashing, Perfect Hashing
Sorting PS3. Out: 3/1 5 |Tue Mar01 | 8 | Sorting | : Insertion & Merge Sort, Master Theorem 8 |Proof of Master Theorem, Examples
Due: Mon 3/7 Thu Mar 03 | 9 | Sorting Il : Heaps 9 |Heap Operations
HW lab: Sun 3/6 6 |Tue Mar 08 | 10| Sorting lll: Lower Bounds, Counting Sort, Radix Sort 10|Models of computation
Wed Mar 09 | Q1] Quiz 1 in class at 7:30pm. Covers L1-R10. Review Session on Tue 3/8 at 7:30pm.
Graphs PS4. Out: 3/10 Thu Mar 10 | 11| Searching |: Graph Representation, Depth-1st Search 11|Strongly connected components
and Due: Fri 3/18 7 |Tue Mar 15 | 12| Searching Il: Breadth-1st Search, Topological Sort 12 |Rubik's Cube Solving
Search HW lab:W 3/16 Thu Mar 17 | 13| Searching Ill: Games, Network properties, Motifs 13 |Subgraph isomorphism
Shortest | PS5 8 |Tue Mar 29 | 14| Shortest Paths I: Introduction, Bellman-Ford 14|Relaxation algorithms
Paths Out: 3/29 Thu Mar 31 | 15] Shortest Paths Il: Bellman-Ford, DAGs 15|Shortest Path applications
Due: Mon 4/11 9 |Tue Apr 05 16| Shortest Paths Ill: Dijkstra 16|Speeding up Dijkstra's algorithm
HW lab:Sun 4/10 Thu Apr07 | 17] Graph applications, Genome Assembly 17|Euler Tours
Dynamic | PS6 10|Tue Apr 12 18| DP I: Memoization, Fibonacci, Crazy Eights 18|Limits of dynamic programming
Program |[Out: Tue 4/12 Wed Apr 13 | Q2| Quiz 2 in class at 7:30pm. Covers L11-R17. Review Session on Tue 4/13 at 7:30pm.
ming Due: Fri 4/29 Thu Apr 14 | 19| DP II: Shortest Paths, Genome sequence alighment 19 |Edit Distance, LCS, cost functions
HW lab:W 4/27 11|Tue Apr 19 - | Patriot's Day - Monday and Tuesday Off - [No recitation
Thu Apr21 | 20] DP lll: Text Justification, Knapsack 20|Saving Princess Peach
12|Tue Apr 26 21] DP IV: Piano Fingering, Vertex Cover, Structured DP 21|Phylogeny
Numbers | PS7 out Thu4/28 Thu Apr 28 | 22| Numerics | - Computing on large numbers 22 |Models of computation return!
Pictures |Due: Fri 5/6 13|Tue May 3 23| Numerics Il - Iterative algorithms, Newton's method 23 |Computing the nth digit of it
(NP) HW lab: Wed 5/4 Thu May 5 24| Geometry: Line sweep, Convex Hull 24|Closest pair
14|Tue May 10 | 25| Complexity classes, and reductions 25 |Undecidability of Life
Beyond Thu May 12 | 26| Research Directions (15 mins each) + related classes
15|Finals week |[Q3] Final exam is cumulative L1-L26. Emphasis on L18-L26. Review Session on Fri 5/13 at 3pm

Unit #4 Overview: Searching

Today: Introduction to Games and Graphs

* Rubik’s cube, Pocket cube, Game space

 Graph definitions, representation, searching
Tuesday: Graph algorithms and analysis
 Breadth First Search, Depth First Search

* Queues, Stacks, Augmentation, Topological sort
Thursday: Networks in biology and real world

* Network/node properties, metrics, motifs, clusters
* Dynamic processes, epidemics, growth, resilience

Graph Applications

 Web

— crawling

e Soclal Network

— friend finder

o Computer Networks
— Internet routing

— connectivity
Game states

— rubik’s cube, chess

Today: Solving Rubik’s cube...

... and finding God’s number

Cracking the 3x3 Rubik’s cube

Increasingly efficient algorithms exist for solving the
cube using a fixed set of moves

— 1981: 52 moves. Today: <30 moves

In practice, shortcuts may be possible!
— Human intuition can reveal patterns, not follow fixed algorithm

How hard Is Rubik’s cube:
— Size of game space: count distinct positions, number of edges
— 43,252,003,274,489,856,000 positions (4.3*10%9)

How big is 43 quadrillion?

— Number of atoms in the universe: 108!

— Complexity of chess (Shannon number): ~104/
— 19x19 go: #turns ~10%8 ; 1010"8<#games<~1010"171

Searching for God’s number

Date

July, 1981
April, 1992
May, 1992
May, 1992
January, 1995
January, 1995
December, 2005
April, 2006
May, 2007
March, 2008
April, 2008
August, 2008
July, 2010

Lower Upper
bound bound

18
18
18
18
18
20
20
20
20
20
20
20
20

52
42
39
37
29
29
28
27
26
25
23
22
20

Gap

34
24
21
19

[HY
[

O N W U1 OO J 00 L

God’s algorithm would
always use the minimal
number of moves

God’s number: maximum
number of moves needed
by an optimal algorithm

Upper bound nearing in
by Increasingly faster
general algorithms

Lower bound given by
hardest known positions
requiring most moves

The two met just last year!

So, how did they do it? (™™)
Start with 43,252,003,274,489,856,000 positions

Partition into 2.2 billion sets, each with
19.5 billion positions, solve each separately

Reduce 2.2 billion sets to 55.8 million by
symmetry & set cover

Solve each set of 19.5 billion positions
INn 20 seconds or less each

With only 20 seconds to solve each set of 19.5
billion positions, solve each of 2.2 billion sets

Call Google and compute 35 CPU years in a week

cube20.0rg

Distance Count of Positions

How many ‘hardest
positions exist?

* 18 Is the most frequent min
number of required moves

 Relatively few 20-away
positions exist

* No position requires 21 moves!

e The “hardest’
position for the
author’s solver

®

H% »)
FU-F2D-BUR-F-LD-R-U-LUB-D2R-FLIZDZ CUbGZO-Org

0 1
1 18
2 243
3 3,240
4 43,239
5 574,908
6 7,618,438
7 100,803,036
8 1,332,343,288
9 17,596,479,795
10 232,248,063,316
11 3,063,288,809,012
12 40,374,425,656,248
13 531,653,418,284,628
14 6,989,320,578,825,350
15 91,365,146,187,124,300

16 ~1,100,000,000,000,000,000
17 ~12,000,000,000,000,000,000
18 ~29,000,000,000,000,000,000
19 ~1,500,000,000,000,000,000
20 ~300,000,000
21 None

Representing space of solutions

2x2 Rubik’s cube

Pocket Cube

2 x 2 x 2 Rubik’s cube
Start with any colors

Moves are quarter
turns of any face

“Solve” by making
each side one color

Configuration Graph

One vertex for each state

* One edge for each move from a vertex

— 6 faces to twist

— 3 nontrivial ways to twist (1/4, 2/4, 3/4)
— S0, 18 edges out of each state

 Solve cube by finding a path (of moves)
from initial state (vertex) to “solved” state

Combinatorics

o State for each arrangement and orientation of 8
cubelets

— 8 cubelets In each position: 8! Possibilities
— Each cube has 3 orientations: 38 Possibilities
— Total: 81*3%= 264,539,320 vertices

e But divide out 24 orientations of whole cube

* And there are three separate connected

components (twist one cube out of place 3
ways)

e Result: 3,674,160 states to search

Graph formalization

Definitions and representation

Graph Definitions

G=(V,E)
V a set of vertices
— usually number denoted by n
E <V x V aset of edges (pairs of vertices)
— usually number denoted by m
— note m < n(n-1) = O(n?)
Flavors:
— pay attention to order: directed graph
— Ignore order: undirected graph
e Then only n(n-1)/2 possible edges

Graph Examples

* Undirected * Directed

 V={a,b,c,d} V={ab,c}

- E={{ab}, {a,c}, {bc}, < E={(ac), (ab)(bc),
{b,d}, {c,d}} (c,b)}

O—® 0

Graph Representation

* To solve graph problems, must examine graph

e S0 need to represent in computer

 Four representations with pros/cons
1. Adjacency lists (of neighbors of each vertex)
2. Incidence lists (of edges from each vertex)
3. Adjacency matrix (of which pairs are adjacent)
4. Implicit representation (as neighbor function)

List vs. matrix representations

Adjacency list
Adjacency matrix
Space/time tradeoffs

1. Adjacency Lists

* For each vertex v, list its neighbors (vertices to
which it Is connected by an edge)

— Array A of V| linked lists
— ForveV, list A]v] stores neighbors {u | (v,u)

E}
— Directed graph only stores outgoing neighbors
— Undirected graph stores edge in two places
 In python, A[v] can be hash table

— Vv any hashable object

Adjacency list example

3 d—1T—|cC

|

° |

2. Adjacency Matrix

e assume V={1, ..., n}
 matrix A=(g;) Isn x n

—row I, column |

—a; =11f(1,)) e E

—a;; = 0 otherwise
e (store as, e.g., array of arrays)

Adjacency Matrix Example

Graphs and Matrix Algebra

 can treat adjacency matrix as matrix
* e.¢., A% = length-2 paths between vertices ..

* [note: Ak for large k is related to pagerank
of vertices]

 undirected graph - symmetric matrix

 [eigenvalues useful for many graph
algorithms, see Lecture 13 for examples]

Representation Tradeoffs: Space

* Adjacency lists use one list node per edge
— And two machine words per node

- S0 s)pace IS ®(mw) bits (m=#edges, w=word
Size

« Adjacency matrix uses nZ entries
— But each entry can be just one bit
— S0 ®(n?) bits
» Matrix better only for very dense graphs
— m near n?
— (Google can’t use matrix)

Representation Tradeoffs: Time

* Add edge
— both data structures are O(1)
e Check “is there an edge from u to v”?
— matrix is O(1)
— adjacency list must be scanned
 Visit all neighbors of v (very common)
— adjacency list is O(neighbors)
— matrix is ®(n)
 Remove edge
— like find + add

Other representations

Object-oriented, implicit

Object Oriented Variants

* object for each vertex u
— u.neighbors is list of neighbors for u

* Incidence list: object for each edge e
— u.edges = list of outgoing edges from u
— e object has endpoints e.head and e.tail

=g
ea e &b
e can store additional info per vertex or edge
without hashing

Implicit representation

Don’t store graph at all

Implement function Adj(u) that returns list
of neighbors or edges of u

Requires no space, use It as you need it
And may be very efficient
e.g., Rubik’s cube

Back to the Rubik’s cube game

Searching graphs

Searching for a solution path

2(two-away

6 neighbors 'j

1 turn

How big Is the space?

« Graph algorithms allow us explore space
— Nodes: configurations
— Edges: moves between them
— Paths to ‘solved’ configuration: solutions

The lay of the
land (geography)
6 vertices reachable by

one 90° turn

* 9 vertices reachable by
one 90° or 180° turn

 To reach furthest node,
11 or 14 moves needed

1

6 9

27 54

120 321

534 1847
2,256 9,992
8,969 50,136
33,058 227,526
114,149 870,072
360,508 1,887,748
930,588 623,800

1,350,852 2,644
782,536
90,280

2176
- diameter

Unit #4 Overview: Searching

Today: Introduction to Games and Graphs

* Rubik’s cube, Pocket cube, Game space

 Graph definitions, representation, searching
Tuesday: Graph algorithms and analysis
 Breadth First Search, Depth First Search

* Queues, Stacks, Augmentation, Topological sort
Thursday: Networks in biology and real world

* Network/node properties, metrics, motifs, clusters
* Dynamic processes, epidemics, growth, resilience

Unit #4 — Games, Graphs, Searching, Networks

Unit Pset Week |[Date Lecture (Tuesdays and Thursdays) Recitation (Wed and Fri)
Intro PS1 1 |Tue Feb 01 1 | Introduction and Document Distance 1 |Python and Asymptotic Complexity
Binary Out: 2/1 Thu Feb 03 2 | Peak Finding Problem 2 |Peak Finding correctness & analysis
Search Due: Mon 2/14 2 |Tue Feb 08 3 | Scheduling and Binary Search Trees 3 |Binary Search Tree Operations
Trees HW lab: Sun 2/13 Thu Feb 10 4 | Balanced Binary Search Trees 4 |Rotations and AVL tree deletions
Hashing | PS2 Out: 2/15 3 |Tue Feb 15 5 | Hashing | : Chaining, Hash Functions 5 |Hash recipes, collisions, Python dicts
Due: Mon 2/28 Thu Feb 17 6 | Hashing Il : Table Doubling, Rolling Hash 6 |Probability review, Pattern matching
HW lab:Sun 2/27 4 |Tue Feb 22 - | President's Day - Monday Schedule - No Class - |No recitation
Thu Feb 24 7 | Hashing lll : Open Addressing 7 |Universal Hashing, Perfect Hashing
Sorting PS3. Out: 3/1 5 |Tue Mar01 | 8 | Sorting | : Insertion & Merge Sort, Master Theorem 8 |Proof of Master Theorem, Examples
Due: Mon 3/7 Thu Mar 03 | 9 | Sorting Il : Heaps 9 |Heap Operations
HW lab: Sun 3/6 6 |Tue Mar 08 | 10| Sorting lll: Lower Bounds, Counting Sort, Radix Sort 10|Models of computation
Wed Mar 09 | Q1] Quiz 1 in class at 7:30pm. Covers L1-R10. Review Session on Tue 3/8 at 7:30pm.
Graphs PS4. Out: 3/10 Thu Mar 10 | 11| Searching |: Graph Representation, Depth-1st Search 11|Strongly connected components
and Due: Fri 3/18 7 |Tue Mar 15 | 12| Searching Il: Breadth-1st Search, Topological Sort 12 |Rubik's Cube Solving
Search HW lab:W 3/16 Thu Mar 17 | 13| Searching Ill: Games, Network properties, Motifs 13 |Subgraph isomorphism
Shortest | PS5 8 |Tue Mar 29 | 14| Shortest Paths I: Introduction, Bellman-Ford 14|Relaxation algorithms
Paths Out: 3/29 Thu Mar 31 | 15] Shortest Paths Il: Bellman-Ford, DAGs 15|Shortest Path applications
Due: Mon 4/11 9 |Tue Apr 05 16| Shortest Paths Ill: Dijkstra 16|Speeding up Dijkstra's algorithm
HW lab:Sun 4/10 Thu Apr07 | 17] Graph applications, Genome Assembly 17|Euler Tours
Dynamic | PS6 10|Tue Apr 12 18| DP I: Memoization, Fibonacci, Crazy Eights 18|Limits of dynamic programming
Program |[Out: Tue 4/12 Wed Apr 13 | Q2| Quiz 2 in class at 7:30pm. Covers L11-R17. Review Session on Tue 4/13 at 7:30pm.
ming Due: Fri 4/29 Thu Apr 14 | 19| DP II: Shortest Paths, Genome sequence alighment 19 |Edit Distance, LCS, cost functions
HW lab:W 4/27 11|Tue Apr 19 - | Patriot's Day - Monday and Tuesday Off - [No recitation
Thu Apr21 | 20] DP lll: Text Justification, Knapsack 20|Saving Princess Peach
12|Tue Apr 26 21] DP IV: Piano Fingering, Vertex Cover, Structured DP 21|Phylogeny
Numbers | PS7 out Thu4/28 Thu Apr 28 | 22| Numerics | - Computing on large numbers 22 |Models of computation return!
Pictures |Due: Fri 5/6 13|Tue May 3 23| Numerics Il - Iterative algorithms, Newton's method 23 |Computing the nth digit of it
(NP) HW lab: Wed 5/4 Thu May 5 24| Geometry: Line sweep, Convex Hull 24|Closest pair
14|Tue May 10 | 25| Complexity classes, and reductions 25 |Undecidability of Life
Beyond Thu May 12 | 26| Research Directions (15 mins each) + related classes
15|Finals week |[Q3] Final exam is cumulative L1-L26. Emphasis on L18-L26. Review Session on Fri 5/13 at 3pm

Conclude

« Graphs: fundamental data structure
— Directed and undirected

4 possible representations

 Basic methods of graph search

e Next time:

— Formalize BFS and DFS
— Runtime analysis

— Applications

Graph Searching Algorithms

We want to get from current Rubik
state to “solved” state

How do we explore?

Breadth First Search

start with vertex v

list all its neighbors (distance 1)
then all their neighbors (distance 2)
etc. —

A

7
\
{

/
\

{

5

\
{

algorithm starting at s: T~ o
— define frontier F o
— initially F={s} frontier

— repeat F=all neighbors of vertices in F
— until all vertices found

Depth First Search

Like exploring a maze
From current vertex, move to another
Until you get stuck

Then backtrack till you find a new place to
explore

e e.g “left-hand” rule

s

Problem: Cycles

« \What happens if unknowingly revisit a
vertex?

* BFS: get wrong notion of distance

* DFS: go in circles

 Solution: mark vertices

— BFS: If you’ve seen it before, ignore
— DFS: if you’ve seen it before, back up

