
6.006- Introduction to
Algorithms

Lecture 9
Prof. Piotr Indyk

Menu

•  Priority Queues
•  Heaps
•  Heapsort

Priority Queue
A data structure implementing a set S of elements, each
associated with a key, supporting the following operations:

increase_key(S, x, k) :

insert element x into set S
return element of S with largest key
return element of S with largest key and
remove it from S
increase the value of element x’ s key to
new value k
(assumed to be as large as current value)

insert(S, x) :
max(S) :

extract_max(S) :

41 46 49.1 56
time (mins) Lecture 3:

Heap
•  Implementation of a priority queue (more efficient than BST)
•  An array, visualized as a nearly complete binary tree
•  Max Heap Property: The key of a node is ≥ than the keys of
its children
 (Min Heap defined analogously)

All my arrays start at index 1

Heap as a Tree
root of tree: first element in the array, corresponding to i = 1
parent(i) =i/2: returns index of node's parent
left(i)=2i: returns index of node's left child
right(i)=2i+1: returns index of node's right child

Operations with Heaps

insert, extract_max, heapsort

produce a max-heap from an unordered
array

correct a single violation of the heap
property in a subtree at its root

build_max_heap :

max_heapify :

Heap Operations

Max_heapify

•  Assume that the trees rooted at left(i) and right(i) are max-heaps

•  If element A[i] violates the max-heap property, correct violation
by “trickling” element A[i] down the tree, making the subtree
rooted at index i a max-heap

Max_heapify (Example)

Max_heapify (Example)

Max_heapify (Example)

Time=? O(log n)

Build_Max_Heap(A)
Converts A[1…n] to a max heap

Build_Max_Heap(A):
 for i=n/2 downto 1
 do Max_Heapify(A,i)

Time=? O(n)

T(n)=2T(n/2)+O(log n) + Master Theorem

Heap-Sort
Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!

4. Discard node n from heap
 (by decrementing heap-size variable)

5. New root may violate max heap property, but its
children are max heaps. Run max_heapify to fix this.

6. Go to step 2.

Heap-Sort Demo

Swap A[10] and A[1]

Max_heapify(A,1)

Heap-Sort

Heap-Sort

Heap-Sort
Sorting Strategy:

1. Build Max Heap from unordered array;

Heap-Sort
Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!

Heap-Sort
Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!

4. Discard node n from heap
 (by decrementing heap-size variable)

Heap-Sort
Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!

4. Discard node n from heap
 (by decrementing heap-size variable)

5. New root may violate max heap property, but its
children are max heaps. Run max_heapify to fix this.

Heap-Sort

Swap elements A[9] and A[1]

Heap-Sort

Max_Heapify(A,1)

Heap-Sort

Swap elements A[8] and A[1]

Heap-Sort

Running time:

after n iterations the Heap is empty
every iteration involves a swap and a heapify operation;
hence it takes O(log n) time

Overall O(n log n)

