
6.006- Introduction to6.006 Introduction to
Algorithms

Lecture 7
P f M li K lliProf. Manolis Kellis

CLRS: 11.4, 17.

Unit #2 – Genomes, Hashing, and Dictionaries

2

Unit #2: Hashing
L t T G Di ti i H hi• Last Tues: Genomes, Dictionaries, Hashing
– Intro, basic operations, collisions and chaining

Si l if h hi i– Simple uniform hashing assumption
• Last Thur: Faster hashing, hash functions

– Hash functions in practice: div/mult/python
– Faster hashing: Rolling Hash: O(n2)O(nlgn)
– Faster comparison: Signatures: mismatch time

• Today: Space issues
– Dynamic resizing and amortized analysis
– Open addressing, deletions, and probing
– Advanced topics: universal hashing, fingerprints

3

Today: Hashing IΙI: Space issues
R H h f t h i i SUHA lli i tRev: Hash functs, chaining, SUHA, rolling, signatures

Dynamic dictionaries: Resizing hash tables
When to resize: insertions, deletions
Resizing operations, amortized analysis

Open addressing: Doing away w/ linked lists
Operations: insertion, deletionOperations: insertion, deletion
Probing: linear probing, double hashing
Performance analysis: UHA, open vs. chainingPerformance analysis: UHA, open vs. chaining

Advanced topics: Randomized algorithms (shht!)
U i l h hi f t h hiUniversal hashing, perfect hashing
Fingerprinting, file signatures, false positives

Remember Hashing I and II
• Hashing and hash functions• Hashing and hash functions
 Humongous universe of keys itty bitty little space

• Hash table as dictionaryy
 Insert/Search/Delete

• Collisions by chaining
 Build a linked list in each bucket Build a linked list in each bucket
 Operation time is length of list

• Simple Uniform Hashing Assumption
 Every item to uniform random bucket
 n items in size m table average length n/m = α

• Speeding up hashing• Speeding up hashing
 Rolling Hash: fast sequence of hash’s
 Signatures: fast comparison, avoid frequent mismatches

C i• Comparing genomes
 O(n4)ObinsearchL(n3lgn)Ohash(n2lgn)Oroll/sign(nlgn)

Today: Hashing IΙI: Space issues
R H h f t h i i SUHA lli i tRev: Hash functs, chaining, SUHA, rolling, signatures

Dynamic dictionaries: Resizing hash tables
When to resize: insertions, deletions
Resizing operations, amortized analysis

Open addressing: Doing away w/ linked lists
Operations: insertion, deletionOperations: insertion, deletion
Probing: linear probing, double hashing
Performance analysis: UHA, open vs. chainingPerformance analysis: UHA, open vs. chaining

Advanced topics: Randomized algorithms (shht!)
U i l h hi f t h hiUniversal hashing, perfect hashing
Fingerprinting, file signatures, false positives

Dynamic Dictionaries
I b i li i i d ll• In substring application, inserted all at once
then scanned

• More generally, arbitrary sequence of insert,
delete, find

• How do we know how big the table will get?
• What if we guess wrong?What if we guess wrong?

too small load high, operations too slow
too large high initialization cost, consumes space,too large high initialization cost, consumes space,

• Want m=(n) at all times
potentially more cache-misses

• Want m=(n) at all times

Solution: Resize when neededSolution: Resize when needed

• Start table at small constant sizeStart table at small constant size
• When table too full, make it bigger

h bl k i ll• When table too empty, make it smaller
• How?
 Build a whole new hash table and insert items
 Pick new hash ‘seed’, recompute all hashesp
 Recreate new linked lists
 Time spent to rebuild: p

(new-size) + #hashes x (HashTime)

When to resize?When to resize?
• Approach 1: whenever n > m, rebuild table to new

size
 Sequence of n inserts

E h i t b ild

a factor of
(HashTime) is

suppressed here
 Each increases n past m, causes rebuild
 Total work: (1 + 2 + … + n) = (n2)

• Approach 2: Whenever n ≥ 2m rebuild table to new• Approach 2: Whenever n ≥ 2m, rebuild table to new
size
 Costly inserts: insert 2i for all i:Costly inserts: insert 2 for all i:

These cost: (1 + 2 + 4 + … + n) = (n)
 All other inserts take O(1) time – why?
 Inserting n items takes O(n) time
 Keeps m a power of 2 --- good for mod

Amortized AnalysisAmortized Analysis

• If a sequence of n operations takes time T, thenIf a sequence of n operations takes time T, then
each operation has amortized cost T/n
 Like amortizing a loan: payment per monthg p y p

• Rebuilding when n ≥ 2m some ops are very
slow
 (n) for insertion that causes last resize

• But on average, fastg ,
 O(1) amortized cost per operation

• Often, only care about total runtimeOften, only care about total runtime
 So averaging is fine

Insertions+Deletions?
b ild bl i h ?• Rebuild table to new size when n < m?

 Same as bad insert: O(n2) work
R b ild h < /2?• Rebuild when n<m/2?
 Makes a sequence of deletes fast
 What about an arbitrary sequence of inserts/deletes? What about an arbitrary sequence of inserts/deletes?

• Suppose we have just rebuilt: m=n
• Next rebuild a grow at least m more inserts areNext rebuild a grow at least m more inserts are

needed before growing table
 Amortized cost O(2m / m)) = O(1)

• Next rebuild a shrink at least m/2 more deletes are
needed before shrinking

Cost to rebuild Paid after m insertions

needed before shrinking
 Amortized cost O(m/2 / (m/2)) = O(1)
Cost to rebuild Paid after m/2 deletions

Putting the two togetherPutting the two together

• AlgorithmAlgorithm
 Keep m a power of 2 (good for mod)
 Grow (double m) when n ≥ mGrow (double m) when n ≥ m
 Shrink (halve m) when n ≤ m/4

• AnalysisAnalysis
 Just after rebuild: n=m/2
 Next rebuild a grow at least m/2 more insertsg

• Amortized cost O(2m / (m/2)) = O(1)
 Next rebuild a shrink at least m/4 more deletes

• Amortized cost O(m/2 / (m/4)) = O(1)

SummarySummary

• Arbitrary sequence of insert/delete/findArbitrary sequence of insert/delete/find
• O(1) amortized time per operation

Today: Hashing IΙI: Space issues
R H h f t h i i SUHA lli i tRev: Hash functs, chaining, SUHA, rolling, signatures

Dynamic dictionaries: Resizing hash tables
When to resize: insertions, deletions
Resizing operations, amortized analysis

Open addressing: Doing away w/ linked lists
Operations: insertion, deletionOperations: insertion, deletion
Probing: linear probing, double hashing
Performance analysis: UHA, open vs. chainingPerformance analysis: UHA, open vs. chaining

Advanced topics: Randomized algorithms (shht!)
U i l h hi f t h hiUniversal hashing, perfect hashing
Fingerprinting, file signatures, false positives

The trouble with chaining

h(k1)

item1

k1

“my heart is sick
of being in chains”

‐‐ Tori Amos ‘92

h(k3)

K

item3

k3

“our people are sick
of being in chains”
Tunisia, Egypt, Libya ‘10

h(k2) = h(k4)
k2 k4

Tunisia, Egypt, Libya 10

item2 item4

• Hash table just for indexing, all storage in linked lists
• In practice: Bad locality of reference for table itemsp y
• Would like to store only table in memory, with all items

Open AddressingOpen Addressing
• Different technique for dealing with collisions;

does not use linked list
• Instead: if bucket occupied, find other bucket p ,

(need m≥n)
• For insert: probe a sequence of buckets untilFor insert: probe a sequence of buckets until

find empty one!
• h(x) specifies probe sequence for item x• h(x) specifies probe sequence for item x
 Ideally, sequence visits all buckets

h U ´ [1] [1] h: U ´ [1..m] [1..m]

Universe of keys Probe number
Bucket

Open Addressing (example)
NIL

NIL

1

2

Ope dd ess g (e p e)

NIL

NIL

collisionother item

NIL

NIL

collisionother item

NIL

NIL

free spot!itemk

NIL

NIL

collisionother item

NIL

NIL

NIL m-1

OperationsOperations

• InsertInsert
 Probe till find empty bucket, put item there

S h• Search
 Probe till find item (return with success)
 Or find empty bucket (return with failure)

• Because if item inserted, would use that empty bucket

• Delete
 Probe till find item
 Remove, leaving empty bucket (NIL)

Problem with DeletionProblem with Deletion

• Consider a sequenceConsider a sequence
 Insert x
 Insert y Insert y

• suppose probe sequence for y passes x bucket
• store y elsewherestore y elsewhere

 Delete x (leaving hole)
 Search for y Search for y

• Probe sequence hits x bucket
• Bucket now emptyp y
• Conclude y not in table (else y would be there)

Solution for deletionSolution for deletion

• When delete xWhen delete x
 Leave it in bucket
 But mark it deleted store “tombstone” (DEL) But mark it deleted --- store tombstone (DEL)

• Future search for x sees x is deleted
 Returns “x not found”

• “Insert z” probes may hit x bucket
 Since x is deleted, overwrite with z
 So keeping deleted items doesn’t waste space

Open Addressing (example after del 2)
NIL

DEL

1

2

p g (p)

NIL

NIL

collisionother item

NIL

NIL

collisionother item

DEL

NIL

free spot!itemk

NIL

DEL

NILNIL

NIL

NIL m-1

Today: Hashing IΙI: Space issues
R H h f t h i i SUHA lli i tRev: Hash functs, chaining, SUHA, rolling, signatures

Dynamic dictionaries: Resizing hash tables
When to resize: insertions, deletions
Resizing operations, amortized analysis

Open addressing: Doing away w/ linked lists
Operations: insertion, deletionOperations: insertion, deletion
Probing: linear probing, double hashing
Performance analysis: UHA, open vs. chainingPerformance analysis: UHA, open vs. chaining

Advanced topics: Randomized algorithms (shht!)
U i l h hi f t h hiUniversal hashing, perfect hashing
Fingerprinting, file signatures, false positives

Linear probingLinear probing

• h(k i) = h’(k) + i for ordinary hash h’h(k,i) h (k) + i for ordinary hash h
• Problem: creates “clusters”, i.e. sequences of full

bucketsbuckets
 exactly like parking

Bi l hi b l f i Big clusters are hit by lots of new items
 They get put at end of cluster
 Big cluster gets bigger: “rich get richer” phenomenon

Ø

11

if h(k,1) is any of

cluster

if h(k,1) is any of
these, the cluster
will get bigger

m-1

i.e. the bigger the cluster is, the
more likely it is to grow larger,
since there are more opportunities
to make it largerto make it larger…

Linear probingLinear probing

• h(k i) = h’(k) + i for ordinary hash h’h(k,i) h (k) + i for ordinary hash h
• Problem: creates “clusters”, i.e. sequences of full

bucketsbuckets
 exactly like parking

Bi l hi b l f i Big clusters are hit by lots of new items
 They get put at end of cluster
 Big cluster gets bigger: “rich get richer” phenomenon

• For 0.1 < < 0.99, cluster size (log n)
• Wrecks our constant-time operations

Double HashingDouble Hashing
• Two ordinary hash functions f(k), g(k)
• Probe sequence h(k,i) = f(k) + i·g(k) mod m
• If g(k) relatively prime to m, hits all bucketsIf g(k) relatively prime to m, hits all buckets
 E.g., if m=2r, make g(k) odd
 The same bucket is hit twice if for some i,j:The same bucket is hit twice if for some i,j:

f(k) + i·g(k) = f(k) + j·g(k) mod m
 i·g(k) = j·g(k) (mod m)g() j g() ()
(i-j)·g(k) = 0 (mod m)
 m and g(k) not relatively prime g() y p

(otherwise m should divide i-j, which is not possible for i, j<m)

Today: Hashing IΙI: Space issues
R H h f t h i i SUHA lli i tRev: Hash functs, chaining, SUHA, rolling, signatures

Dynamic dictionaries: Resizing hash tables
When to resize: insertions, deletions
Resizing operations, amortized analysis

Open addressing: Doing away w/ linked lists
Operations: insertion, deletionOperations: insertion, deletion
Probing: linear probing, double hashing
Performance analysis: UHA, open vs. chainingPerformance analysis: UHA, open vs. chaining

Advanced topics: Randomized algorithms (shht!)
U i l h hi f t h hiUniversal hashing, perfect hashing
Fingerprinting, file signatures, false positives

Performance of Open AddressingPerformance of Open Addressing

• Operation time is length of probe sequenceOperation time is length of probe sequence
• How long is it?

l h d• In general, hard to answer.
• Introducing…
• “Uniform Hashing Assumption” (UHA):
 Probe sequence is a uniform random permutationProbe sequence is a uniform random permutation

of [1..m]
 (N.B. this is different to the simple uniform (p

hashing assumption (SUHA))

Analysis under UHAAnalysis under UHA

• Suppose:Suppose:
 a size-m table contains n items
 we are using open addressing we are using open addressing
 we are about to insert new item

P b bili fi b f l? P(f l)• Probability first probe successful? P(free slot)
Free slots

l l

Why? From UHA, probe sequence random permutation
Hence first position probed random

Total slots

Hence, first position probed random
m‐n out of the m slots are unoccupied

Analysis under UHA: 2nd probeAnalysis under UHA: 2 probe
• If first probe unsuccessful, probability secondIf first probe unsuccessful, probability second

prob successful?
Free slots

Why?

Free slots

Total slots

• From UHA, probe sequence random permutation
•Hence, first probed slot is random; the second probed
slot is random among the remaining slots, etc.
•Since first probe unsuccessful, it probed an occupied slot
H h d b i h i if l f 1•Hence, the second probe is choosing uniformly from m-1

slots, among which m-n are still clean

Analysis under UHA: 3rd probeAnalysis under UHA: 3 probe

• If first two probes unsuccessful probabilityIf first two probes unsuccessful, probability
third prob successful?

Free slots

1‐p

•

Free slots

Total slots

≥ ≥

full free
≥p

• …

 every trial succeeds with probability ≥p

≥p ≥p e.g.:
α=n/m=90%
p=0.1

expected number of probes till success?

e.g. if α=90%, expected number of probes is at most 10

Expected number of probes
ob

es
r o

f p
ro

nu
m

be
r

ec
te

d
n

Load factor (n/m)Ex
pe

()
Open addressing sensitive to
As 1, access time shoots up

Open Addressing vs. ChainingOpen Addressing vs. Chaining

• Open addressing skips linked listsOpen addressing skips linked lists
 Saves space (of list pointers)
 Better locality of referenceBetter locality of reference

• Array concentrated in m space
• So fewer main-memory accesses bring it to cache
• Linked list can wander all of memory

• Open addressing sensitive to
 As 1, access time shoots up
 Cannot allow > 1

O dd i d d h h id• Open addressing needs good hash to avoid
clustering

Today: Hashing IΙI: Space issues
R H h f t h i i SUHA lli i tRev: Hash functs, chaining, SUHA, rolling, signatures

Dynamic dictionaries: Resizing hash tables
When to resize: insertions, deletions
Resizing operations, amortized analysis

Open addressing: Doing away w/ linked lists
Operations: insertion, deletionOperations: insertion, deletion
Probing: linear probing, double hashing
Performance analysis: UHA, open vs. chainingPerformance analysis: UHA, open vs. chaining

Advanced topics: Randomized algorithms (shht!)
U i l h hi f t h hiUniversal hashing, perfect hashing
Fingerprinting, file signatures, false positives

Done with unit #2: Hashing
L t T G Di ti i H hi• Last Tues: Genomes, Dictionaries, Hashing
– Intro, basic operations, collisions and chaining

Si l if h hi i– Simple uniform hashing assumption
• Last Thur: Faster hashing, hash functions

– Hash functions in practice: div/mult/python
– Faster hashing: Rolling Hash: O(n2)O(nlgn)
– Faster comparison: Signatures: mismatch time

• Today: Space issues
– Dynamic resizing and amortized analysis
– Open addressing, deletions, and probing
– Advanced topics: universal hashing, fingerprints

46

Next week: Sorting

48

