6.006- Introduction to
Algorithms

' HHHHHHH CCORMEM
EEEEEEEE .LEISERSON

RRRRRRRRRRRRRR

Lecture 5
Prof. Manolis Kellis

U

NIt #2 — Genomes, Hashing, and Dictionaries

Unit Pset Week |[Date Lecture (Tuesdays and Thursdays) Recitation (Wed and Fri)
Intro PS1 1 |Tue Feb 01 1 | Introduction and Document Distance 1 |Python and Asymptotic Complexity
Binary Out: 2/1 Thu Feb 03 2 | Peak Finding Problem 2 |Peak Finding correctness & analysis
Search Due: Mon 2/14 2 |Tue Feb 08 3 | Scheduling and Binary Search Trees 3 |Binary Search Tree Operations
Trees HW lab: Sun 2/13 Thu Feb 10 4 | Balanced Binary Search Trees 4 |Rotations and AVL tree deletions
Hashing | PS2 Out: 2/15 3 |Tue Feb 15 5 | Hashing | : Chaining, Hash Functions 5 |Hash recipes, collisions, Python dicts
Due: Mon 2/28 Thu Feb 17 6 | Hashing Il : Table Doubling, Rolling Hash 6 |Probability review, Pattern matching
HW lab:Sun 2/27 4 |Tue Feb 22 - | President's Day - Monday Schedule - No Class - |No recitation
Thu Feb 24 7 | Hashing lll : Open Addressing 7 |Universal Hashing, Perfect Hashing
Sorting PS3. Out: 3/1 5 |Tue Mar01 | 8 | Sorting | : Insertion & Merge Sort, Master Theorem 8 |Proof of Master T-heorem, Examples
Due: Mon 3/7 Thu Mar 03 | 9 | Sorting Il : Heaps 9 |Heap Operations
HW lab: Sun 3/6 6 |Tue Mar 08 | 10| Sorting lll: Lower Bounds, Counting Sort, Radix Sort 10|Models of computation
Wed Mar 09 |Q1]| Quiz 1 in class at 7:30pm. Covers L1-R10. Review Session on Tue 3/8 at 7:30pm.
Graphs PS4. Out: 3/10 Thu Mar 10 | 11| Searching |: Graph Representation, Depth-1st Search 11|Strongly connected components
and Due: Fri 3/18 7 |Tue Mar 15 | 12| Searching Il: Breadth-1st Search, Topological Sort 12 |Rubik's Cube Solving
Search HW lab:W 3/16 Thu Mar 17 | 13| Searching lll: Games, Network properties, Motifs 13 |Subgraph isomorphism
Shortest | PS5 8 |Tue Mar 29 | 14| Shortest Paths I: Introduction, Bellman-Ford 14|Relaxation algorithms
Paths Out: 3/29 Thu Mar 31 | 15] Shortest Paths Il: Bellman-Ford, DAGs 15|Shortest Path applications
Due: Mon 4/11 9 |Tue Apr 05 16| Shortest Paths Ill: Dijkstra 16|Speeding up Dijkstra's algorithm
HW lab:Sun 4/10 Thu Apr07 | 17] Graph applications, Genome Assembly 17|Euler Tours
Dynamic | PS6 10|Tue Apr 12 18| DP I: Memoization, Fibonacci, Crazy Eights 18|Limits of dynamic programming
Program |[Out: Tue 4/12 Wed Apr 13 | Q2| Quiz 2 in class at 7:30pm. Covers L11-R17. Review Session on Tue 4/13 at 7:30pm.
ming Due: Fri 4/29 Thu Apr 14 | 19| DP II: Shortest Paths, Genome sequence alighment 19 |Edit Distance, LCS, cost functions
HW lab:W 4/27 11|Tue Apr 19 - | Patriot's Day - Monday and Tuesday Off - [No recitation
Thu Apr21 | 20] DP lll: Text Justification, Knapsack 20|Saving Princess Peach
12|Tue Apr 26 21] DP IV: Piano Fingering, Vertex Cover, Structured DP 21|Phylogeny
Numbers | PS7 out Thu4/28 Thu Apr 28 | 22| Numerics | - Computing on large numbers 22 |Models of computation return!
Pictures |Due: Fri 5/6 13|Tue May 3 23| Numerics Il - Iterative algorithms, Newton's method 23 |Computing the nth digit of it
(NP) HW lab: Wed 5/4 Thu May 5 24| Geometry: Line sweep, Convex Hull 24|Closest pair
14|Tue May 10 | 25| Complexity classes, and reductions 25 |Undecidability of Life
Beyond Thu May 12 | 26| Research Directions (15 mins each) + related classes
15|Finals week |[Q3] Final exam is cumulative L1-L26. Emphasis on L18-L26. Review Session on Fri 5/13 at 3pm

(hashing out...) OUF plan ahead

 Today: Genomes, Dictionaries, and Hashing
— Intro, basic operations, collisions and chaining
— Simple uniform hashing assumption
— Hash functions, python implementation
 Thursday: Speeding up hash tables
— Faster comparison: Signhatures
— Faster hashing: Rolling Hash
 Next week: Space issues
— Dynamic resizing and amortized analysis
— Open addressing, deletions, and probing

3

Our plan for today: Hashing |

 Today: Genomes, Dictionaries, and Hashing
»Matching genome segments
dintroduction to dictionaries
dHash function: definition
Resolving collisions with chaining
dSimple uniform hashing assumption
dHash functions in practice: mod / mult
dPython implementation
 Thursday: Speeding up hash tables
 Next week: Space issues

Comparing two genomes

bit by bit

c
ml
S £
L o

I <
T E
L
=1 LTI T
n —
= L
0 NN
T E
I 0 |
T -
T E
ST 1T
-
RO T T |~
N) o
T TR
I I -

N R

LN | B B

(SN IR -

X ‘6T-T Sowosowo4yd aSho|A]

DNA matching: All about strings

 How to find ‘corresponding’ pieces of DNA

e Given two DNA sequences
— Strings over 4-letter alphabet

 Find longest substring that appears in both
— Algorithm vs. Arithmetic
— Algorithm vs. Arithmetic
— L19: Subsequence - much harder (e.g. Algorithm)

e Other applications:
— Plagiarism detection
— Word autocorrect
— Jeopardy!

Naive Algorithm

o Say strings S and T of length n
 For L=ndownto 1
»for all length L substrings X1 of S
»for all length L substrings X2 of T
> I1f X1=X2, return L

e Runtime analysis
— n candidate lengths
— n strings of that length in X1
— n strings of that length in X2
— L time to compare the strings
— Total runtime: Q(n%)

Improvement 1: Binary Search on L

Start with L=n/2
for all length L substrings X1 of S
for all length L substrings X2 of T

If X1=X2, success, try larger L
If failed, try smaller L

Runtime analysis
Q(n*) =>Q(n3 log n)

Improvement 2: Python Dictionaries

* For every possible length L=n,...,1
— Insert all length L substrings of S into a dictionary
— For each length L substring of T, check if it exists in dictionary

« Possible lengths for outer loop: n

* For each length:

— at most n substrings of S inserted into dictionary, each insertion takes
time O(1) * L (L is paid because we have to read string to insert it)

— at most n substrings of T checked for existence inside dictionary,
each check takes time O(1) * L

— Overall time spent to deal with a particular length L is O(Ln)
e Hence overall O(n3)
 With binary search on length, total is O(n? log n)
* “Rolling hash” dictionaries improve to O(n log n) (next time)

Our plan for today: Hashing |

 Today: Genomes, Dictionaries, and Hashing
¥IMatching genome segments
» Introduction to dictionaries
dHash function: definition
Resolving collisions with chaining
dSimple uniform hashing assumption
dHash functions in practice: mod / mult
dPython implementation
 Thursday: Speeding up hash tables
 Next week: Space issues

10

Dictionaries: Formal Definition
It IS a set containing items; each item has a key

what keys and items are Is quite flexible

Supported Operations:
— Insert(key, item): add item to set, indexed by key
— Delete(key): delete item indexed by key

— Search(key): return the item corresponding to the
given key, if such an item exists

— Random_key(): return a random key in dictionary

Assumption: every item has its own key (or that
Inserting new item clobbers old
Application (and origin of name): Dictionaries

— Key i1s word in English, item is word In French

Dictionaries are everywhere

« Spelling correction
— Key i1s misspelled word, item is correct spelling

e Python Interpreter
— Executing program, see a variable name (key)
— Need to look up its current assignment (item)

o \Web server
— Thousands of network connections open

— When a packet arrives, must give to right process
— Key 1s source IP address of packet, item is handler

Implementation

e Use BSTs!

 can keep keys in a BST, keeping a pointer from
each key to its value

* O(log n) time per operation
« Often not fast enough for these applications!

e Can we beat BSTs?

If only we could do all operations in O(1)...

— O

keyl

key?2
key3

NN

—~+
(D
3
=

N\

—
™
=
N

I\

—~
™®
3
W

\

Dictionaries: Attempt #1

e Forget about BSTs..
o Use table, indexed by keys!

roblems...

.

“Everything is a number”
-- Pythagoras

Interpreting words as numbers

o What If keys aren’t numbers?
— Anything in the computer is a sequence of bits
— So we can pretend it’s a number

o Example: English words

— 26 letters in alphabet
—> can represent each with 5 bits

— Antidisestablishmentarianism has 28 letters
— 28*5 = 140 bits
— So, store in array of size 2140o0ps
 Isn’t this too much space for 100,000 words?

Our plan for today: Hashing |

 Today: Genomes, Dictionaries, and Hashing
¥IMatching genome segments
¥lintroduction to dictionaries
»Hash function: definition
Resolving collisions with chaining
dSimple uniform hashing assumption
dHash functions in practice: mod / mult
dPython implementation
 Thursday: Speeding up hash tables
 Next week: Space issues

17

Hash Functions

o Exploit sparsity
— Huge universe U of possible keys
— But only n keys actually present
— Want to store in table (array) of size m~n

e Define hash function h:U->{1..m}
— Filter key k through h(') to find table position
— Table entries are called buckets

e Time to Insert/find key Is
— Time to compute h (generally length of key)
— Plus one time step to look in array

The “magic’ of hash functions

PHENOMENAL
COSMIC j> itty bitty living space

POWERSI!

With apologies to Disney

Hashing exploits sparsity of space

l4 :universe of all possible keys;

huge set
K :actual keys; small set but not

known In advance

All keys map to small space...

@
- 1
(|)_ Insert item1, - h(k1)
® 04 W 1
. ® 0 .. - \&) tit
® g0 ® o 1) INSert i : item3
P - _ h(k3)
Z/(. ® e Kk ey k3
o..o o od ® k2 .k3
® o®* % % K4
e o -
e ¢ (ii) insert item2;
with key -
I{ : universe of all possible keys item2 h(k2)
(iv) suppose we now try to inset m-1

item4, with key k4 and h(k4)=h(k2)...

... leading to collisions

(|)_ Insert item1, teml
® ®e W 1
. ®eo ¢ o i) i
® g0 %0 o 1) Insert i item3
® o . % k1 -
u.. .o...O ey k3
®
® e k4 - -~
® o - ___\
e © (i) InSert item
with key

"-,}

[A :universe of all possible keys

(iv) suppose we now try to inset
item4, with key k4 and h(k4)=h(k2)...

h(k1)

h(k3)

h(k2) = h(k4)
(collision)

m-1

Our plan for today: Hashing |

 Today: Genomes, Dictionaries, and Hashing
YIMatching genome segments
WlIntroduction to dictionaries
¥IHash function: definition
»Resolving collisions with chaining
dSimple uniform hashing assumption
dHash functions in practice: mod / mult
dPython implementation
 Thursday: Speeding up hash tables
 Next week: Space issues

23

Collisions

 \What went/can go wrong?
— Distinct keys x and y
— But h(x) = h(y)
— Called a collision
e This Is unavoidable: if table smaller than
range, some keys must collide...
— Pigeonhole principle

 \What do you put in the bucket?

Coping with collisions

* ldeal: Change to a new “uncoliding” hash
function and re-hash all elements in the table

— Hard to find, and can take a long time if m=0(n)
* ldea2: Chaining
— Linked list of hashed items for each bucket (today)

* ldea3: Open addressing
— Find a different, empty bucket for y (next lecture)

Chalning
- Each bucket, linked
list of contained items

h(k1)

k1

- Space used is
space of table
e plus one unit per item
(size of key and item)

iteml

item3

h2I=hika)

k2 k4

item2 item4

A : universe of all possible keys
K :actual keys, not known in advance

Problem Solved?

 To find key, must scan whole list in key’s bucket
e Length L list costs L key comparisons
o |f all keys hash to same bucket, lookup cost ®(n)

Solution: optimism

Our plan for today: Hashing |

 Today: Genomes, Dictionaries, and Hashing
YIMatching genome segments
WlIntroduction to dictionaries
¥IHash function: definition
¥IResolving collisions with chaining
» Simple uniform hashing assumption
dHash functions in practice: mod / mult
dPython implementation
 Thursday: Speeding up hash tables
 Next week: Space issues

28

Simple uniform hashing assumption

o Definition:
eEach key k € K of keys is equally likely to be
hashed to any slot of table T, independent

of where other keys are hashed.

Let n be the number of keys in the table,
and let m be the number of slots.

Define the load factor of T to be
o =n/m
= average number of keys per slot.

Chaining Analysis under SUHA

Average case analysis:

e n items In table of m buckets

o Average number of items/bucket is a.=n/m

* So expected time to find some key x is (1+a)
e O(1) iIf a=0(1), 1.e. m=Q(n)

apply hash search
function the
and access list

slot

Summary (rehash)

Matching big genomes is a hard problem
— And you will tackle it in your problem set!

Dictionaries are pervasive
Hash tables implement them efficiently

— Under an optimistic assumption of random keys
— Can be “made true” by heuristic hash functions

Key Idea for beating BSTs: Indexing
— Sacrificed operations: previous, successor

Chaining strategy for collision resolution
Next two lectures: speed & space improvements

Unit #2: Genomes, Hashing, Dictionaries

 Today: Genomes, Dictionaries, and Hashing

s1Intro, basic operations

/] collisions and chaining

¥1Simple uniform hashing assumption
¥lHash functions 1 Python implementation
 Thursday: Speeding up hash tables
» Faster comparison: Signatures
» Faster hashing: Rolling Hash
 Next week: Space issues
»Dynamic resizing and amortized analysis
»QOpen addressing, deletions, and probing

42

