
6.006- Introduction to6.006 Introduction to
Algorithms

Lecture 5
P f M li K lliProf. Manolis Kellis

Unit #2 – Genomes, Hashing, and Dictionaries

2

(hashing out…) Our plan ahead
T d G Di ti i d H hi• Today: Genomes, Dictionaries, and Hashing
– Intro, basic operations, collisions and chaining

Si l if h hi i– Simple uniform hashing assumption
– Hash functions, python implementation

• Thursday: Speeding up hash tables
– Faster comparison: Signatures
– Faster hashing: Rolling Hash

• Next week: Space issues
– Dynamic resizing and amortized analysis
– Open addressing, deletions, and probing

3

Our plan for today: Hashing I
• Today: Genomes, Dictionaries, and Hashing
Matching genome segmentsMatching genome segments
Introduction to dictionaries
Hash function: definitionHash function: definition
Resolving collisions with chaining
Simple uniform hashing assumptionSimple uniform hashing assumption
Hash functions in practice: mod / mult
Python implementationPython implementation

• Thursday: Speeding up hash tables
N t k S i• Next week: Space issues

4

Comparing two genomes
bit by bit

Mouse
chrs

bit by bit
Human
chr 1

19
, X

m
es
 1
‐1

om
os
om

us
e
ch
ro

M
ou

DNA matching: All about strings
• How to find ‘corresponding’ pieces of DNA
• Given two DNA sequencesGiven two DNA sequences

– Strings over 4-letter alphabet
• Find longest substring that appears in bothFind longest substring that appears in both

– Algorithm vs. Arithmetic
– Algorithm vs. ArithmeticAlgorithm vs. Arithmetic
– L19: Subsequence - much harder (e.g. Algorithm)

• Other applications:Other applications:
– Plagiarism detection
– Word autocorrect WatsonWord autocorrect
– Jeopardy!

Naïve Algorithm
• Say strings S and T of length n

F L d t 1 n*• For L = n downto 1
for all length L substrings X1 of S
f ll l h L b i X2 f T n*

n*
n

for all length L substrings X2 of T
if X1=X2, return L

i l i
n

n

• Runtime analysis
– n candidate lengths

t i f th t l th i X1– n strings of that length in X1
– n strings of that length in X2
– L time to compare the stringsL time to compare the strings
– Total runtime: (n4)

Improvement 1: Binary Search on LImprovement 1: Binary Search on L

• Start with L=n/2Start with L n/2
• for all length L substrings X1 of S

f ll l h b i 2 f• for all length L substrings X2 of T
• if X1=X2, success, try larger L

if failed, try smaller L

• Runtime analysis
(n4)(n3 log n)(n4) (n3 log n)

Improvement 2: Python DictionariesImprovement 2: Python Dictionaries
• For every possible length L=n,…,1

– Insert all length L substrings of S into a dictionaryInsert all length L substrings of S into a dictionary
– For each length L substring of T, check if it exists in dictionary

• Possible lengths for o ter loop: n• Possible lengths for outer loop: n
• For each length:

– at most n substrings of S inserted into dictionary, each insertion takes
ti O(1) * L (L i id b h t d t i t i t it)time O(1) * L (L is paid because we have to read string to insert it)

– at most n substrings of T checked for existence inside dictionary,
each check takes time O(1) * L
Overall time spent to deal with a particular length L is O(Ln)– Overall time spent to deal with a particular length L is O(Ln)

• Hence overall (n3)
• With binary search on length, total is (n2 log n)
• “Rolling hash” dictionaries improve to (n log n) (next time)

Our plan for today: Hashing I
• Today: Genomes, Dictionaries, and Hashing
Matching genome segmentsMatching genome segments
Introduction to dictionaries
Hash function: definitionHash function: definition
Resolving collisions with chaining
Simple uniform hashing assumptionSimple uniform hashing assumption
Hash functions in practice: mod / mult
Python implementationPython implementation

• Thursday: Speeding up hash tables
N t k S i• Next week: Space issues

10

Dictionaries: Formal Definition
• It is a set containing items; each item has a keyg ; y
• what keys and items are is quite flexible
• S pported Operations:• Supported Operations:

– Insert(key, item): add item to set, indexed by key
(k) d l i i d d b k– Delete(key): delete item indexed by key

– Search(key): return the item corresponding to the
i k if h it i tgiven key, if such an item exists

– Random_key(): return a random key in dictionary
• Assumption: every item has its own key (or that

inserting new item clobbers old
• Application (and origin of name): Dictionaries

– Key is word in English, item is word in French

Dictionaries are everywherey
• Spelling correction

– Key is misspelled word, item is correct spelling
• Python Interpretery p

– Executing program, see a variable name (key)
– Need to look up its current assignment (item)p g ()

• Web server
– Thousands of network connections open– Thousands of network connections open
– When a packet arrives, must give to right process

Key is source IP address of packet item is handler– Key is source IP address of packet, item is handler

ImplementationImplementation
• use BSTs!use BSTs!

• can keep keys in a BST, keeping a pointer from
each key to its valueeach key to its value

• O(log n) time per operation

• Often not fast enough for these applications!

• Can we beat BSTs?

if only we could do all operations in O(1)if only we could do all operations in O(1)…

Dictionaries: Attempt #1

0

Dictionaries: Attempt #1

0
1
2 • Forget about BSTs..

key1 item1 • Use table, indexed by keys!

key2 item2

key3 item3

Problems…
• What if keys aren’t numbers?• What if keys aren t numbers?

How can I then index a table?

“E thi i b ”“Everything is a number”
‐‐ Pythagoras

Interpreting words as numbers
• What if keys aren’t numbers?

– Anything in the computer is a sequence of bitsAnything in the computer is a sequence of bits
– So we can pretend it’s a number

• Example: English words• Example: English words
– 26 letters in alphabet

 can represent each with 5 bits can represent each with 5 bits
– Antidisestablishmentarianism has 28 letters

28*5 140 bit– 28*5 = 140 bits
– So, store in array of size 2140 ….oops

• Isn’t this too much space for 100,000 words?

Our plan for today: Hashing I
• Today: Genomes, Dictionaries, and Hashing
Matching genome segmentsMatching genome segments
Introduction to dictionaries
Hash function: definitionHash function: definition
Resolving collisions with chaining
Simple uniform hashing assumptionSimple uniform hashing assumption
Hash functions in practice: mod / mult
Python implementationPython implementation

• Thursday: Speeding up hash tables
N t k S i• Next week: Space issues

17

Hash FunctionsHash Functions
• Exploit sparsity

– Huge universe U of possible keys
– But only n keys actually present

i bl () f i– Want to store in table (array) of size mn
• Define hash function h:U{1..m}

– Filter key k through h() to find table position
– Table entries are called buckets

• Time to insert/find key is
– Time to compute h (generally length of key)
– Plus one time step to look in array

The ‘magic’ of hash functionsThe magic of hash functions

PHENOMENALPHENOMENAL
COSMIC

POWERS!!

itty bitty living space

POWERS!!

With apologies to Disney

Hashing exploits sparsity of space

K

: universe of all possible keys;

: actual keys; small set but not
known in advance

K

f p y ;
huge set

known in advance

All keys map to small space…
Ø

1
(i) insert item1 h(k1)item1

h(k3)item3

(i) insert item1,
with key k1

(iii) insert item3,
i h k k

()
with key k3

: universe of all possible keys item2 h(k2)

(ii) insert item2,
with key k2

m‐1

f p y

(iv) suppose we now try to inset () pp y
item4, with key k4 and h(k4)=h(k2)…

… leading to collisions
Ø

1
(i) insert item1 h(k1)

h(k3)

item1

item3

(i) insert item1,
with key k1

(iii) insert item3,
i h k k

()
with key k3

problem
h(k2) = h(k4)
(collision): universe of all possible keys

(ii) insert item2,
with key k2

()

m‐1

f p y

(iv) suppose we now try to inset () pp y
item4, with key k4 and h(k4)=h(k2)…

Our plan for today: Hashing I
• Today: Genomes, Dictionaries, and Hashing
Matching genome segmentsMatching genome segments
Introduction to dictionaries
Hash function: definitionHash function: definition
Resolving collisions with chaining
Simple uniform hashing assumptionSimple uniform hashing assumption
Hash functions in practice: mod / mult
Python implementationPython implementation

• Thursday: Speeding up hash tables
N t k S i• Next week: Space issues

23

CollisionsCollisions

• What went/can go wrong?What went/can go wrong?
– Distinct keys x and y

But h(x) = h(y)– But h(x) = h(y)
– Called a collision

Thi i id bl if bl ll h• This is unavoidable: if table smaller than
range, some keys must collide…
– Pigeonhole principle

• What do you put in the bucket?

Coping with collisions
• Idea1: Change to a new “uncoliding” hash

function and re-hash all elements in the table
– Hard to find, and can take a long time if m=O(n)

• Idea2: Chainingg
– Linked list of hashed items for each bucket (today)

• Idea3: Open addressingp g
– Find a different, empty bucket for y (next lecture)

• Idea4: Perfect hashing (not covered in 6.006)Idea4: Perfect hashing (not covered in 6.006)
– Create a 2nd-level hash table of size k2 for each

k-element bin, and try several 2nd-level hash
functions until no collisions are found (see 6.046)

ChainingChaining
- Each bucket, linked
list of contained items

h(k1)

item1

K

- Space used is
space of table
l i i

k1

h(k3) plus one unit per item
(size of key and item)item3

k3

h(k2) = h(k4)

item2

k2

item4

k4

: universe of all possible keys: universe of all possible keys
: actual keys, not known in advanceK

Problem Solved?Problem Solved?

T fi d k t h l li t i k ’ b k t• To find key, must scan whole list in key’s bucket
• Length L list costs L key comparisons
• If all keys hash to same bucket, lookup cost (n)

Solution: optimism

Our plan for today: Hashing I
• Today: Genomes, Dictionaries, and Hashing
Matching genome segmentsMatching genome segments
Introduction to dictionaries
Hash function: definitionHash function: definition
Resolving collisions with chaining
Simple uniform hashing assumptionSimple uniform hashing assumption
Hash functions in practice: mod / mult
Python implementationPython implementation

• Thursday: Speeding up hash tables
N t k S i• Next week: Space issues

28

Simple uniform hashing assumption
• Definition:

•Each key k  K of keys is equally likely to be
h h d t l t f t bl T i d d thashed to any slot of table T, independent
of where other keys are hashed.

Let n be the number of keys in the table,
and let m be the number of slots.

Define the load factor of T to be
 = n/m
= average number of keys per slot.

Chaining Analysis under SUHAChaining Analysis under SUHA

Average case analysis:Average case analysis:
• n items in table of m buckets

A b f i /b k i /• Average number of items/bucket is =n/m
• So expected time to find some key x is (1+
• O(1) if =O(1), i.e. m=(n)

apply hash search
function
and access
slot

the
list

slot

Summary (rehash)
• Matching big genomes is a hard problem

And you will tackle it in your problem set!– And you will tackle it in your problem set!
• Dictionaries are pervasive

H h t bl i l t th ffi i tl• Hash tables implement them efficiently
– Under an optimistic assumption of random keys

C b “ d t ” b h i ti h h f ti– Can be “made true” by heuristic hash functions
• Key idea for beating BSTs: Indexing

S ifi d i i– Sacrificed operations: previous, successor
• Chaining strategy for collision resolution
• Next two lectures: speed & space improvements

Unit #2: Genomes, Hashing, Dictionaries
T d G Di ti i d H hi• Today: Genomes, Dictionaries, and Hashing
– Intro, basic operations, collisions and chaining

Si l if h hi i– Simple uniform hashing assumption
– Hash functions, Python implementation

• Thursday: Speeding up hash tables
Faster comparison: Signatures
Faster hashing: Rolling Hash

• Next week: Space issues
Dynamic resizing and amortized analysis
Open addressing, deletions, and probing

42

