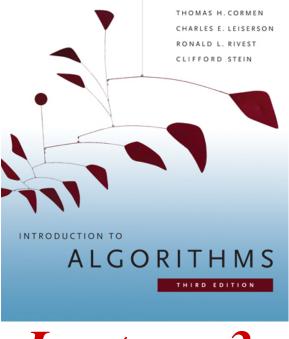
6.006- Introduction to Algorithms



Lecture 3

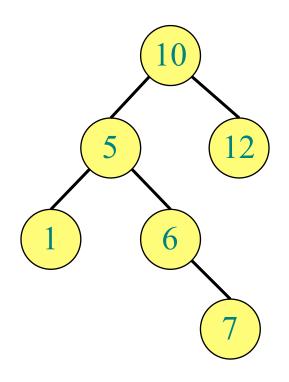
Prof. Piotr Indyk

Overview

- Runway reservation system:
 - Definition
 - -How to solve with lists
- Binary Search Trees
 Operations

Readings: CLRS 10, 12.1-3

http://izismile.com/tags/Gibraltar/



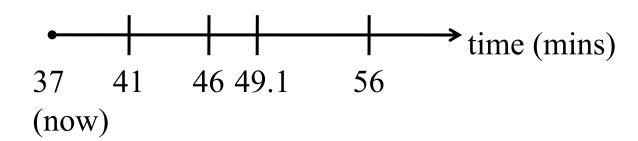
Runway reservation system

- Problem definition:
 - Single (busy) runway
 - Reservations for landings

- maintain a set of future landing times
- a new request to land at time t
- add t to the set if no other landings are scheduled within < 3 minutes from t
- when a plane lands, removed from the set

Runway reservation system

• Example



$$- R = (41, 46, 49.1, 56)$$

- requests for time:
 - 44 => reject (46 in R)
 - 53 => ok
 - 20 => not allowed (already past)
- Ideas for efficient implementation ?

Some options:

• Keep R as an unsorted list

- Bad: takes linear time to search for collisions

- Good: can insert t in O(1) time
- Keep R as a sorted array (resort after each insertion)
 - Bad: takes "a lot of" time to insert elements
 - Good: 3 minute check can be done in $O(\log n)$ time:
 - Using binary search, find* the smallest i such that R[i]>=t (next larger element)
 - Compare t to R[i] and R[i-1]

Need: *fast* insertion into *sorted* list (sort of)

Binary Search Trees

- Simple and natural data structures
- Bulding blocks for

(a,b) tree, 2-3 tree, 2-3-4 tree, AA tree, AVL tree, B

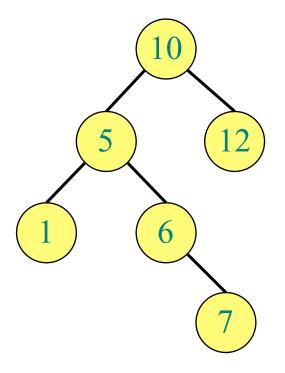
Binary Search Trees (BSTs)

- Each node x has:
 - -key[x]
 - Pointers:
 - left[x]
 - right[x]
 - p[x]



Binary Search Trees (BSTs)

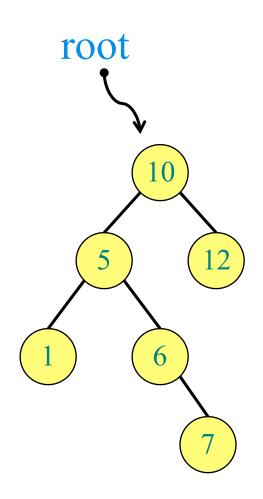
 $key[y] \ge key[x]$



• How are BSTs made ?

Growing BSTs

- Insert 10
- Insert 12
- Insert 5
- Insert 1
- Insert 6
- Insert 7



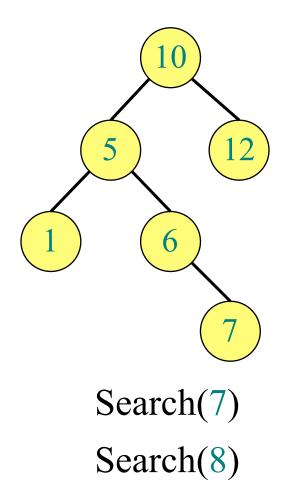
BST as a data structure

- Operations:
 - insert(k): inserts key k
 - search(k): finds the node containing key k (if it exists)
 - next-larger(x): finds the next element after element x
 - findmin(x): finds the minimum of the tree rooted at x
 - delete(x): deletes node x

Search

Search(k):

• Recurse left or right until you find k, or get NIL



Next-larger

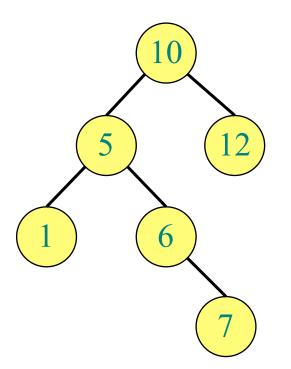
next-larger(x): • If right[x] \neq NIL then return minimum(right[x]) Otherwise 12 $y \leftarrow p[x]$ While $y \neq NIL$ and x = right[y] do6 • x ← y • $y \leftarrow p[y]$ Return y

next-larger(\bigcirc) next-larger(\bigcirc)

Minimum

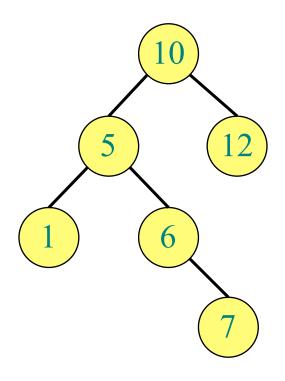
Minimum(x)

- While $left[x] \neq NIL$ do $x \leftarrow left[x]$
- Return x



Analysis

- We have seen insertion, search, minimum, etc.
- How much time does any of this take ?
- Worst case: O(height)
 => height really important
- After we insert **n** elements, what is the worst possible BST height ?



Analysis

- n-1
- So, still O(n) for the runway reservation system operations

5

6

10

12

- Next lecture: **balanced** BSTs
- Readings: CLRS 13.1-2