6.006
Introduction to Algorithms

v
-
o N ‘
N
N\
ALGORITHMS

Lecture 1: Document Distance

Prof. Erik Demaine

Your Professors

L.‘ : _ \\}|

Prof. Erik Demaine Prof. Piotr Indyk Prof. Manolis Kellis

Your
TAS

David Wen Nicholas Zehender

Your
Textbook

' THOMAS H.CORMEN
CHARLES E. LEISERSON
RONALD L. RIVEST

\ CLIFFORD STEIN

xS

INTRODUCTION TO

THIRD EDITIO

Administrivia

Handout: Course information

Webpage: http://courses.csail.mit.edu/6.006/springl1/
Sign up for recitation if you didn’t fill out form already
Sign up for problem set server: https://alg.csail.mit.edu/

Sign up for Piazzza account to ask/answer questions:
http://piazzza.com/

Prereqgs: 6.01 (Python), 6.042 (discrete math)
Grades: Problem sets (30%)

Quiz 1 (20%; Mar. 8 @ 7.30-9.30pm)
Quiz 2 (20%; Apr. 13 @ 7.30-9.30pm)
Final (30%)

Lectures & Recitations; Homework labs; Quiz reviews
Read collaboration policy!

Today

e Class overview
— What'’s a (good) algorithm?
— Topics

* Document Distance
— Vector space model

— Algorithms
— Python profiling & gotchas

What's an Algorithm?

Mathematical abstraction of

computer program

Well-specified method for solving

a computational problem

— Typically, a finite sequence
of operations

Description might be structured -
English, pseudocode, or real code

Key: no ambiguity

9

entry
h 4

Euchd's algorithm for the greatest
common divisor (gcd) of two
numbers

be

Y

INPUTA B

> 3
(%] (4]
<
3 3
s

| B—B-A

| GOTO2

¥

| N

| A—A-B

| GOT0 2

¥

I

PRINT A

http://en.wikipedia.org/wiki/File:Euclid flowchart 1.png

J

al-Khwarizmi
(c. 780-850)

e “aql-kha-raz-mi 3

)

R,

. ad N

- N N 2
—— R

MUXaMMea
Z\ anbXopesMi

- o~ o~ o~ o~ ~ o~ —_— —_ ~ ~ p— — — o~ o~

http://en.wikipedia.org/wiki/Al-Khwarizmi

http://en.wikipedia.org/wiki/File:Abu_Abdullah Muhammad bin Musa al-Khwarizmi edit.png

\

)

7
2
’

&

G Bt
o
)

&

’
o

\

’

..\A“
4
=

al'KhWériZmi A

CCAREY)
|
.
NS
W%

(c. 780-850)

e “al-kha-raz-mi” Kol e 2 s

o

-y

- i

o adlieallol thiga s Aiyats S o :
<5 I8 st rols sl
— The Compendious o j»—&r&,r»-{:ﬁfy—v' &

. / SN B % Al ss N

Book on .Calculatlon by "'Je'(:kf ij&'/ A L
Completion and £ Cr RSN T

Balancing (c.830) ¥

o slugse
— Linear & quadratic
equations: some of the

first algorithms
http://en.wikipedia.org/wiki/Al-Khwarizmi

http://en.wikipedia.org/wiki/File:Image-Al-Kit%C4%81b al-
mu%E1%B8%ABta%E1%B9%A3ar f%C4%AB %E1%B8%A5is%C4%81b al-
%C4%9Fabr wa-l-mug%C4%81bala.jpg

e Father of algebra

XTI CREA AT

Efficient Algorithms

 Want an algorithm that’s
— Correct
— Fast
— Small space “C%Q’ /
— General o
— Simple
— Clever

Efficient Algorithms
6@")

e Mainly interested in scalability
as problem size grows

Q)

cost /\
Cima.
i (Y)
GREAD
- B(1)

T

?ro%Qem sSize N

>

Why Efficient Algorithms?

e Save wait time, storage needs, energy
consumption/cost, ...

e Scalability = win

— Solve bigger problems given fixed resources
(CPU, memory, disk, etc.)

e Optimize travel time, schedule conflicts, ...

2. Abstract irrelevant detail
3. Reduce to a problem you learn here

N o L1k

. Define computational problem

How to Design an
Efficient Algorithm?

(or 6.046 or algorithmic literature)

Else design using “algorithmic toolbox”
Analyze algorithm'’s scalability
Implement & evaluate performance
Repeat (optimize, generalize)

XN U WD

O

Modules & Applications

Introduction Document similarity
Binary Search Trees Scheduling

Hashing File synchronization
Sorting Spreadsheets

Graph Search Rubik’s Cube
Shortest Paths Google Maps

Dynamic Programming Justifying text, packing, ..

Numbers Pictures (NP) Computing m, collision
detection, hard problem

Beyond Folding, streaming, bio

Document

Distance

e Given two documents,
how similar are they?

e Applications:

— Find similar documents

— Detect plagiarism /
duplicates
— Web search

Go ugle

Google Search | I'm Feeling Lucky

http:

'www.google.com)/

Wikipedia:Mirrors and forks/Abc

From Wikipedia, the free encyclopedia
< Wikipedia:Mirrors and forks

Mirrors and Forks : (Numbers) ABC - DEF - GHI - JKL - MNO - PC

Contents [hide]

1 Numbers

2A

1.1 {5-Digit US ZIPCODE}.us

1.2 Opo0

1.3 1-1-2008.com

1.4 100india.com

1.5 101languages.net

1.6 1bx.com and related

1.7 21st century Cambodia: View and Vision
1.8 2008/9 Wikipedia Selection for schools
1.9 2place.org

1.10 2violent.com

1.11 7val

1.12 999 Network

2.1 Aaronlanguage.com

2.2 Abaara

2.3 Abbaci books

2.4 ABC World

2.5 About.com

2.6 Absolute Astronomy

2.7 aboutsociology.com

2.8 AbsoluteArts.com

2.9 Academic Kids

2.10 Academie.de Net-Lexikon
2.11 adago.com

2.12 Adorons.com

2.13 Advantacell.com

2.14 African Movie Academy Awards
2.15 Africhoice

2.16 Afropedea.org

2.17 Agenda.z1.ro
2.18 aircraft-list.com http://en.wikipedia.org/wiki/Wikipedia:Mirrors and forks

Document
Distance

e How to define
“document”?

 Word = sequence of
alphanumeric
characters

* Document =
sequence of words

— Ignore punctuation &
formatting

Collaboration policy

The goal of homework is to give you practice in mastering the course
material. Consequently, you are encouraged to collaborate on problem
sets. In fact, students who form study groups generally do better on
exams than do students who work alone. If you do work in a study group,
however, you owe it to yourself and your group to be prepared for your
study group meeting. Specifically, you should spend at least 30-45
minutes trying to solve each problem beforehand. If your group is unable
to solve a problem, try asking questions via Piazzza so that other groups
and the course staff can be helpful.

You must write up each problem solution by yourself without
assistance, even if you collaborate with others to solve the problem. You
are asked on problem sets to identify your collaborators. If you did not
work with anyone, you should write "Collaborators: none." If you obtain a
solution through research (e.g., on the web), acknowledge your source,
but write up the solution in your own words. It is a violation of this
policy to submit a problem solution that you cannot orally explain to
a member of the course staff.

Code you submit must also be written by yourself. You may receive
help from your classmates during deugging. Don't spend hours trying to
debug a problem in your code before asking for help. However,
regardless of who is helping you, only you are allowed to make changes
to your code. Both manual and automatic mechanisms will be
employed to detect plagiarism in code.

No other 6.006 student may use your solutions; this includes your
writing, code, tests, docu- mentation, etc. It is a violation of the 6.006
collaboration policy to permit anyone other than 6.006 staff and
yourself to see your solutions to either theory or code questions.

Plagiarism and other anti-intellectual behavior cannot be tolerated in any
academic environment that prides itself on individual accomplishment. If
you have any questions about the collaboration policy, or if you feel that
you may have violated the policy, please talk to one of the course staff.
Although the course staff is obligated to deal with cheating appropriately,
we often have the ability to be more understanding and lenient if we find
out from the transgressor himself or herself rather than from a third party.

Document
Distance

e How to define
“distance”?

e Idea: focus on
shared words

 Word frequencies:

—D(w)=#
occurrences of word
w in document D

Collaboration policy

The goal of homework is to give you practice in mastering the course
material. Consequently, you are encouraged to collaborate on problem
sets. In fact, students who form study groups generally do better on
exams than do students who work alone. If you do work in a study group,
however, you owe it to yourself and your group to be prepared for your
study group meeting. Specifically, you should spend at least 30-45
minutes trying to solve each problem beforehand. If your group is unable
to solve a problem, try asking questions via Piazzza so that other groups
and the course staff can be helpful.

You must write up each problem solution by yourself without
assistance, even if you collaborate with others to solve the problem. You
are asked on problem sets to identify your collaborators. If you did not
work with anyone, you should write "Collaborators: none." If you obtain a
solution through research (e.g., on the web), acknowledge your source,
but write up the solution in your own words. It is a violation of this
policy to submit a problem solution that you cannot orally explain to
a member of the course staff.

Code you submit must also be written by yourself. You may receive
help from your classmates during deugging. Don't spend hours trying to
debug a problem in your code before asking for help. However,
regardless of who is helping you, only you are allowed to make changes
to your code. Both manual and automatic mechanisms will be
employed to detect plagiarism in code.

No other 6.006 student may use your solutions; this includes your
writing, code, tests, docu- mentation, etc. It is a violation of the 6.006
collaboration policy to permit anyone other than 6.006 staff and
yourself to see your solutions to either theory or code questions.

Plagiarism and other anti-intellectual behavior cannot be tolerated in any
academic environment that prides itself on individual accomplishment. If
you have any questions about the collaboration policy, or if you feel that
you may have violated the policy, please talk to one of the course staff.
Although the course staff is obligated to deal with cheating appropriately,
we often have the ability to be more understanding and lenient if we find
out from the transgressor himself or herself rather than from a third party.

Vector Space Model
|Salton, Wong, Yang 1975]

e Treat each document D as a vector of its words

— One coordinate D (w) for every possible word w

 Example: 3o
1h--—--
. D — ((th t"
1 e ca D,-D, =1
— D, = “the dog”
‘the’

e Similarity between vectors? T

— Dot product: 77

‘cat’

Dy Dy =) Dy(w): Dy(w)

http://portal.acm.org/citation.cfm?id=361220

Vector Space Model
|Salton, Wong, Yang 1975]

e Problem: Dot product not scale invariant

e Example 1:
— Dy = “the cat”
— D, = “the dog”
—-D,-D, =1
e Example 2:
— Dy = “the cat the cat”

1
— D, =“the dogthedog” 2 ~_ ___:_ =
— Dl . Dz — 2

‘cat’

http://portal.acm.org/citation.cfm?id=361220

Vector Space Model
|Salton, Wong, Yang 1975]

e Idea: Normalize by # words: 4 dog’
Dy - D,
[[D1] - 11D]]

e Geometric solution:
angle between vectors

Dl.DZ
[[D1]] - [1D:]

— 0 = “identical”, 90° = orthogonal (no shared words)

0(D,,D,) = arccos

http://portal.acm.org/citation.cfm?id=361220

Algorithm

1. Read documents

2. Split each document into words

3. Count word frequencies (document vectors)
4. Compute dot product

Algorithm

1. Read documents

2. Split each document into words
— re.findall(“\w+”, doc)

— But how does this actually work?

3. Count word frequencies (document vectors)

4. Compute dot product

Algorithm
O, |Qine))

1. Read documents
_ _ =0 \&ocumenTD
2. Split each document into words N
— For each line in document:
For each character in line:

[f not alphanumeric:

Add previous word O({L) O([Q;mD
(if any) to list

Start new word

3. Count word frequencies (document vectors)
4. Compute dot product

Algorithm

1. Read documents
2. Split each document into words

3. Count word frequencies (document vectors
a. Sortthewordlist < Olwl w), w=1 words MOZD_}ULE
b. For each word in word list:

— If same as last word: <— O(\ word D O(i lwor&]

Increment counter word

_ Else: O | =O(ldscumeit]

Add last word and its counter to list
Reset counter to 0

4. Compute dot product

= W

Algorithm

Read documents
Split each document into words
Count word frequencies (document vectors)

. Compute dot product:

For every possible word: <— co ttevations...
Look up frequency in each document
Multiply
Add to total

= W

Algorithm

Read documents
Split each document into words
Count word frequencies (document vectors)

. Compute dot product:

For every word in first document: & “1 fexations
[f it appears in second document:&~ O(U«’D
Multiply word frequencies § (1)

Add to total
QCWW’:D

> W N

Algorithm

Read documents
Split each document into words
Count word frequencies (document vectors)

. Compute dot product:

a. Start at first word of each document (in sorted\order)

b. If words are equal:

Multiply word frequencies
Add to total O(\md‘) O(MOC’D
c. In whichever document has lexically
lesser word, advance to next word
d. Repeat until either document out of words ,/

Algorithm

1. Read documents
2. Split each document into words
3. Count word frequencies (document vectors)

a. Initialize a dictionary mapping words to counts
b. For each word in word list:

— Ifin dictionary: O(\JOCD
Increment counter [)(lword|) with laigl«

— Else: +O(»_D “with hiol Pmbobﬂt\}
Put 0 in dictionary prebak %‘ Y

4. Compute dot product /V\ODgULE,

= W

Algorithm

Read documents
Split each document into words
Count word frequencies (document vectors)

. Compute dot product:

. . -l- -
For every word in first document: ¢ Wy fextions

[f it appears in second document:&~ O(lmovpﬁ)

with i l\

Multiply word frequencies § O(4) proﬂoab&&;,
Add to total

O(l&ociib U’IHL

L\Tc)k PYobOcL} TQi(y

Python Implementations

HEBHHBBRRBBBH BB BB BB HBBRHBRBH BB BB B RH
Operation 1l: read a text file
HUBRBBBABBBHBBRBRBHBRRRHBRBHBRBRRH
def read_file(filename):

HEBHBBHBRBB BB BB BHBBR BB BB BB BHBRRBBH BB BB BB R BB R R HRH
Operation 2: split the text lines into words
e e R b SR L
def get_words_from_line_list(L):

HUERBBHBBHBBRBBRBBRBBBBRBRRBBRBRHBRBRRHBRBHBRHRH
oOperation 3: count frequency of each word
HERHBBRBBHBBHBBHBBHBBHBBRBBRBBHBBHBRHBBHBRHBRHBH
def count_frequency(word_Tlist):

HHEBRRBBRHBBBHBBHBBRHBBRHBBBHBBHBBRHBBRHBBBHHBBBHRBRHBBRH BB HHRBHHH
Operation 4: sort words into alphabetic order #EE
HEBRABBRBBBRBRBABRRABBRB R B BB B BHBRRB BB BB BB BB R BRBRBHR B R B R B R BB BHEH
def insertion_sort(A):

Python Profiling il mntson

File t2.bobsey.txt : 6667 1lines, 49785 words, 3354 distinct words
File t3.Tlewis.txt : 15996 1lines, 182355 words, 8530 distinct words
The distance between the documents is: 0.574160 (radians)

3397380 function calls in 192.500 CPU seconds

Oordered by: standard name

ncalls tottime percall cumtime percall filename:Tlineno(function)

1 0.000 0.000 0.000 0.000 :0(acos)
1241849 10.325 0.000 10.325 0.000 :0(append)
1300248 10.501 0.000 10.501 0.000 :0(Cisalnum)
232140 2.076 0.000 2.076 0.000 :0(join)
368314 2.960 0.000 2.960 0.000 :0(len)
232140 1.856 0.000 1.856 0.000 :0(Tower)
2 0.000 0.000 0.000 0.000 :0(open)
2 0.000 0.000 0.000 0.000 :0(range)
2 0.028 0.014 0.028 0.014 :0(readlines)
1 0.000 0.000 0.000 0.000 :0(setprofile)
1 0.000 0.000 0.000 0.000 :0(sqrt)
1 0.008 0.008 192.500 192.500 <string>:1l(<module>)
2 16.121 8.061 16.121 8.061 docdist2.py:112(insertion_sort)
")2 0.000 0.000 191.748 95.874 docdist2.py:134(word_frequencies_T
or_file
3 0.384 0.128 0.732 0.244 docdist2.py:152(inner_product)
B 0.000 0.000 D. 732 0.732 docdist2.py:178(vector_angle)
1 0.012 0.012 192.492 192.492 docdist2.py:188(main)
2 0.000 0.000 0.028 0.014 docdist2.py:40(read_file)
lisES 2 63.724 31.862 120.416 60.208 docdist2.py:55(get_words_from_1l1ine
_l1st
) 22663 29.414 0.001 56.691 0.003 docdist2.py:67(get_words_from_stri
ng
2 55.091 27.546 5§5.183 27.592 docdist2.py:95(count_frequency)
1 0.000 0.000 192.500 192.500 profile: 0(ma1n())

0 0.000 0.000 profile:0(profiler)

Culprit

R e e e L
Operation 2: split the text lines into words
HBBBBBAABHBBRARBRBRRARBHBRRARBRBRBARBH BB RAHBHBRAH
def ggg_words_from_1ine_1ist(L):
Parse the given 1list L of text lines into words.
Return list of all words found.

mmrn

word_list = []
for 1ine in L:

words_in_line = get_words_from_string(line)
word_Tist = word Tist + words_in_1line
return word_ 11st 7

A+R caste O(IAI+(B])
“_\'iq_g: 2 é(zﬂf worcas n fine LB = @(wg.) [wor$+ case
a %)

Fix
R i e e e e
Operation 2: split the text lines into words
HEBBABRBRBHBRHBRBHBBBABRBRHHBBRAB BB AR R BRHH BB AR BB HH
def ggg_words_from_1ine_]ist(L):

Parse the given list L of text lines into words.
Return list of all words found.

word_Tist = []

for 1ine in L:
words_1n Tine = get_ words_from_string(line)
Using ' extend 1s much more efficient
word_Tlist.extend(words_in_1l1ine)

return word_list /Q
Aexterd®) costs OUB))

Python Implementations

docdistl |initial version

docdist2 |add profiling 192.5 sec
docdist3 | replace + with extend 126.5 sec
docdist4 | count frequencies using dictionary 73.4 sec
docdist5 | split words with string.translate 18.1 sec
docdisté | change insertion sort to merge sort 11.5 sec
docdist7 | no sorting, dot product with dictionary 1.8 sec
docdist8 | split words on whole document, 0.2 sec

not line by line

Experiments on Intel Pentium 4, 2.8GHz, Python 2.6.2, Linux 2.6.18.
Document 1 (t2.bobsey.txt) has 268,778 lines, 49,785 words, 3,354 distincts.
Document 2 (t3.lewis.txt) has 1,031,470 lines, 182,355 words, 8,530 distincts.

Don’t Forget!

Webpage:
http://courses.csail.mit.edu/6.006/spring11/

Sign up for recitation if you didn’t already
receive a recitation assignment from us

Sign up for problem set server:
https://alg.csail.mit.edu/

Sign up for Piazzza account to ask/answer
questions: http://piazzza.com/

