
6.006
Introduction	to	Algorithms

Lecture	1:	Document	Distance
Prof.	Erik	Demaine



Your	Professors

Prof.	Erik	Demaine Prof.	Piotr Indyk Prof.	Manolis Kellis



Your
TAs

Kevin	Kelley Joseph	Laurendi Tianren Qi

Nicholas	ZehenderDavid	Wen



Your	
Textbook



Administrivia
• Handout: Course information
• Webpage:	http://courses.csail.mit.edu/6.006/spring11/
• Sign	up	for	recitation	if	you	didn’t	fill	out	form	already
• Sign up for problem	set	server: https://alg.csail.mit.edu/
• Sign	up	for	Piazzza account	to	ask/answer	questions:	
http://piazzza.com/

• Prereqs: 6.01	(Python), 6.042	(discrete	math)
• Grades: Problem sets (30%)	

Quiz	1	 (20%;	Mar.	8	@	7.30–9.30pm)
Quiz	2	 (20%;	Apr.	13	@	7.30–9.30pm)
Final	 (30%)

• Lectures	&	Recitations;	Homework	labs;	Quiz	reviews
• Read collaboration policy!



Today
• Class	overview

– What’s	a	(good)	algorithm?
– Topics

• Document	Distance
– Vector	space	model
– Algorithms
– Python	profiling	&	gotchas



What’s	an	Algorithm?
• Mathematical	abstraction	of
computer	program

• Well‐specified	method	for	solving
a	computational	problem
– Typically,	a	finite	sequence
of	operations

• Description	might	be	structured	
English,	pseudocode,	or	real	code

• Key: no ambiguity
http://en.wikipedia.org/wiki/File:Euclid_flowchart_1.png



al‐Khwārizmī
(c.	780–850)	
• “al‐kha‐raz‐mi”

http://en.wikipedia.org/wiki/File:Abu_Abdullah_Muhammad_bin_Musa_al‐Khwarizmi_edit.png

http://en.wikipedia.org/wiki/Al‐Khwarizmi



al‐Khwārizmī
(c.	780–850)	
• “al‐kha‐raz‐mi”
• Father	of	algebra

– The	Compendious	
Book	on	Calculation	by	
Completion	and	
Balancing		(c.	830)

– Linear	&	quadratic	
equations:	some	of	the	
first	algorithms

http://en.wikipedia.org/wiki/File:Image‐Al‐Kit%C4%81b_al‐
mu%E1%B8%ABta%E1%B9%A3ar_f%C4%AB_%E1%B8%A5is%C4%81b_al‐
%C4%9Fabr_wa‐l‐muq%C4%81bala.jpg

http://en.wikipedia.org/wiki/Al‐Khwarizmi



Efficient	Algorithms
• Want	an	algorithm	that’s

– Correct
– Fast
– Small	space
– General
– Simple
– Clever



Efficient	Algorithms
• Mainly	interested	in	scalability
as	problem	size	grows



Why	Efficient Algorithms?
• Save	wait	time,	storage	needs,	energy	
consumption/cost,	…

• Scalability	=	win
– Solve	bigger	problems	given	fixed	resources
(CPU,	memory,	disk,	etc.)

• Optimize	travel	time,	schedule	conflicts,	…



How	to	Design	an	
Efficient Algorithm?

1. Define	computational problem
2. Abstract irrelevant detail
3. Reduce	to	a	problem	you	learn	here

(or	6.046	or	algorithmic	literature)
4. Else	design	using	“algorithmic	toolbox”
5. Analyze	algorithm’s	scalability
6. Implement & evaluate performance
7. Repeat	(optimize,	generalize)



Modules	&	Applications
1. Introduction Document similarity
2. Binary	Search	Trees Scheduling
3. Hashing File	synchronization
4. Sorting Spreadsheets
5. Graph	Search Rubik’s Cube
6. Shortest Paths Google Maps
7. Dynamic Programming Justifying	text,	packing,	…
8. Numbers	Pictures	(NP) Computing	π,	collision

detection,	hard	problem
9. Beyond Folding,	streaming,	bio



Document	
Distance

• Given	two	documents,
how	similar	are	they?	

• Applications:
– Find	similar	documents
– Detect	plagiarism	/	
duplicates

– Web	search
(one	“document”	is	query)

http://en.wikipedia.org/wiki/Wikipedia:Mirrors_and_forks/

http://www.google.com/



Document	
Distance

• How	to	define	
“document”?

• Word =	sequence	of	
alphanumeric	
characters

• Document	=	
sequence	of	words
– Ignore	punctuation	&	
formatting



Document	
Distance

• How	to	define	
“distance”?

• Idea: focus	on
shared	words

• Word	frequencies:
– =	#	
occurrences	of	word	
in	document	



Vector	Space	Model
[Salton, Wong, Yang 1975]

• Treat each document as a vector of its words
– One	coordinate	 for	every	possible	word	

• Example:
– ଵ =	“the	cat”
– ଶ =	“the	dog”

• Similarity	between	vectors?
– Dot	product:

ଵ ଶ ଵ ଶ
௪

http://portal.acm.org/citation.cfm?id=361220

‘the’

‘cat’

‘dog’

1
1

1

ଵ ଶ



Vector	Space	Model
[Salton, Wong, Yang 1975]

• Problem: Dot	product	not	scale	invariant
• Example	1:

– ଵ =	“the	cat”
– ଶ =	“the	dog”
– ଵ ଶ

• Example	2:
– ଵ =	“the	cat	the	cat”
– ଶ =	“the	dog	the	dog”
– ଵ ଶ

‘the’

‘cat’

‘dog’

2

2

2

1

1 1
0

http://portal.acm.org/citation.cfm?id=361220



Vector	Space	Model
[Salton, Wong, Yang 1975]

• Idea: Normalize	by	#	words:

ଵ ଶ

ଵ ଶ

• Geometric	solution:
angle	between	vectors

ଵ ଶ
ଵ ଶ

ଵ ଶ
– 0	=	“identical”,	 ∘ =	orthogonal	(no	shared	words)

‘the’

‘cat’

‘dog’

1
1

1

ߠ

http://portal.acm.org/citation.cfm?id=361220



Algorithm
1. Read documents
2. Split each	document into words
3. Count word	frequencies	(document	vectors)
4. Compute dot product



Algorithm
1. Read documents
2. Split each	document into words

– re.findall(‘\w+’, doc)

– But	how	does	this	actually	work?
3. Count word	frequencies	(document	vectors)
4. Compute dot product



Algorithm
1. Read documents
2. Split each	document into words

– For	each	line	in	document:
For	each	character	in	line:

If	not	alphanumeric:
Add	previous	word

(if	any)	to	list
Start	new	word

3. Count word	frequencies	(document	vectors)
4. Compute dot product



Algorithm
1. Read documents
2. Split each	document into words
3. Count word	frequencies	(document	vectors)
a. Sort	the	word	list
b. For	each	word	in	word	list:

– If	same	as	last	word:
Increment	counter

– Else:
Add	last	word	and	its	counter	to	list
Reset	counter	to	0

4. Compute dot product



Algorithm
1. Read documents
2. Split each	document into words
3. Count word	frequencies	(document	vectors)
4. Compute dot product:

For	every	possible	word:
Look	up	frequency	in	each	document
Multiply
Add	to	total



Algorithm
1. Read documents
2. Split each	document into words
3. Count word	frequencies	(document	vectors)
4. Compute dot product:

For	every	word	in	first	document:
If	it	appears	in	second	document:
Multiply	word	frequencies
Add	to	total



Algorithm
1. Read documents
2. Split each	document into words
3. Count word	frequencies	(document	vectors)
4. Compute dot product:
a. Start	at	first	word	of	each	document	(in	sorted	order)
b. If	words	are	equal:

Multiply	word	frequencies
Add	to	total

c. In	whichever	document	has	lexically
lesser	word,	advance	to	next	word

d. Repeat	until	either	document	out	of	words



Algorithm
1. Read documents
2. Split each	document into words
3. Count word	frequencies	(document	vectors)
a. Initialize	a	dictionary	mapping	words	to	counts
b. For	each	word	in	word	list:

– If	in	dictionary:
Increment	counter

– Else:
Put	0	in	dictionary

4. Compute dot product



Algorithm
1. Read documents
2. Split each	document into words
3. Count word	frequencies	(document	vectors)
4. Compute dot product:

For	every	word	in	first	document:
If	it	appears	in	second	document:
Multiply	word	frequencies
Add	to	total



Python	Implementations



Python	Profiling



Culprit



Fix



Python	Implementations
docdist1 initial	version
docdist2 add	profiling 192.5 sec
docdist3 replace	+ with	extend 126.5	sec
docdist4 count	frequencies	using	dictionary 73.4 sec
docdist5 split	words	with	string.translate 18.1	sec
docdist6 change	insertion sort	to	merge	sort 11.5	sec
docdist7 no	sorting, dot	product	with	dictionary 1.8	sec
docdist8 split words	on	whole	document,

not	line	by	line
0.2	sec

Experiments	on	Intel	Pentium	4,	2.8GHz,	Python	2.6.2,	Linux	2.6.18.
Document	1	(t2.bobsey.txt)	has	268,778	lines,	49,785	words,	3,354	distincts.
Document	2	(t3.lewis.txt)	has	1,031,470	lines,	182,355	words,	8,530	distincts.



Don’t	Forget!
• Webpage:	
http://courses.csail.mit.edu/6.006/spring11/

• Sign	up	for	recitation	if	you	didn’t	already	
receive	a	recitation	assignment	from	us

• Sign up for problem	set	server:
https://alg.csail.mit.edu/

• Sign	up	for	Piazzza account	to	ask/answer	
questions:	http://piazzza.com/


