The following are a set of reduction problems in approximate order of difficulty.

1. Consider the two problems:

e FACTOR: Given a number n = pq, the product of two distinct primes p and ¢, find p and gq.
e EULERTOTIENT: Given a number n = pq, where p and ¢ are unknown primes, find ¢(n) =
(p —1)(g — 1), the number of numbers less than n relatively prime to n.
Reduce FACTOR to EULERTOTIENT.
Solution:

Assume we have a black-box algorithm EULERTOTIENT(n) that returns ¢(n) = (p—1)(¢ — 1). To
solve FACTOR(n), we find EULERTOTIENT(n) = ¢(n) = (p—1)(¢ —1) =n+1— (p+¢q). We then
solve the system of equations:

P+ n+1—¢(n)
p—q = VPP—2p4+@=(p+9¢?>—4n

to find p and gq.
2. Consider the following two problems:
e FEEDBACKNODESET: Given a directed graph G = (V, F), find a set of vertices U C V of
minimal size such that if U is removed from V', G has no cycles.
e VERTEXCOVER: Given an undirected graph G = (V, E), find a minimum set of vertices
U C V such that for all (u,v) € E, either v € U or v € U or both.
Reduce VERTEXCOVER to FEEDBACKNODESET.

Solution:Given an undirected graph G = (V, E) and an algorithm for solving FEEDBACKNODE-
SET, create a graph G’ = (V’/,E’) with V' = V. For each undirected edge (u,v) € E, create
directed edges (u/,v') and (v/,u’) in E. Return the unprimed versions of the vertices returned by
FEEDBACKNODESET(G').

3. Consider the following problem:

e SETCOVER: Given a set of sets S = {{a11,a12,...,a1n, }, {a21, -, @205}, s {@m1, o, Gy, }
where the a;;’s may not necessarily be distinct, find the minimum number of sets, Ay, ..., A,
necessary such that every element in any set in S is in at least one of the A;.

Reduce VERTEXCOVER to SETCOVER.

Solution:

Assume we have a black-box algorithm SETCOVER that solves the SETCOVER problem. Given
a graph G = (V, E), for each vertex v; € V, create a set F; C E of edges that have v; as an
endpoint. Run SETCOVER on the F; to get the covering Fj,, ..., F; . Return the corresponding
vertices v;,, ..., V;,,

4. Consider the following two problems:

e PARTITION: Given a set n of non-negative integers {ay, ..., a, }, decide if there is there a subset
P C [1,n] such that } ;cpai = ,qp .
e KNAPSACK: Given a set S = {ay,...,a,} of non-negative integers, and an integer K, decide

if there is there a subset P C S such that ZaieP =K.



Reduce KNAPSACK to PARTITION.

Solution:Assume we have a black-box algorithm PARTITION that can solve the PARTITION prob-
lem. Given an instance of KNAPSACK, with integers S = ai,...,an, let H = 33" a;. Add
integers an4+1 = 2H + 2K and a,4+2 = 4H to the set and return PARTITION(aq, ..., a,42). The
reduction is clearly polynomial. To show it works, we must show there exists P C [1,n + 2] with
> iep @i = Y igp i if and only if there is some @ C S such that 37, o = K.

We first show that if there exists P, there exists Q). Firstly note that if a1 € P, a,+2 € P since
their sum is greater than the sum of the remaining integers. WLOG assume a,,+2 € P. Then

AH+ > a;=2H+2K+ Y

a;EP\anq2 a; €S\ P
= 4H+2 >  a;=4H+2K
a; €EP\an42
-y w
a; €EP\an42

Now assume there exists ). Then

> ai+4H =4H + K =2H+ K +» a; =2H+2K )
a; €Q a; a; ¢Q

so there also exists P = Q U4H.
5. Consider the two problems:

o CNFSATISFIABILITY: Given a set of boolean variables (i.e. variables that can only be TRUE
or FALSE), {v1,...,v,} and the boolean operators A (AND), v (OR), = (NOT), a boolean
expression written in conjunctive normal form (CNF) has the form (z11 V 212 V ...Z1m, ) A
(21 V oo V Zomy ) A oo A(@p1 V ..o V Ty, ) Where each x;; is either a boolean variable or the
negation of a boolean variable. Given a boolean expression written in CNF, determine if there
is some assignment of TRUE/FALSE to each of the boolean variables v, ..., v,, such that the
expression evaluates to TRUE. Assume that m; > 3 for all .

e 3-SAT: A boolean expression written in 3-CNF form has the form (x11 V 212 V x13) A ... A
(z1 V 22 V zk3) where each clause has exactly 3 literals. Given a boolean expression written
in 3-CNF form, determine if there is some assignment to each of the boolean variables such
that the expression evaluates to TRUE.

Reduce CNFSATISFIABILITY to 3-SAT.

Solution:

Assume we have a black-box algorithm for 3-SAT. We show we can use this algorithm to solve an
instance of CNFSATISFIABILITY. Consider an instance of CNFSATISFIABILITY f = (211 V ... V
1y ) A oo A1 Voo V Ty, ). Let there be L =3""_| m,, literals. We introduce L — 3n dummy
variables A1 1, ..., A1 mi—3; -, Anm, —3 and create 3-SAT instance f’ by rewriting each clause ¢; as:

C; = (xi,l VoV ﬁ)\iJ) A\ ()\i,l VgV ﬁ)\i,g) A\ ()\i’g VxiaV ﬁ)\i,g) N ...
Aimi—a V Tims—2 V 7 Ximi—3) A (Nimy—3 V Timy—1 V Tim,)
We return 3-SAT(f").

The reduction is polynomial since L is polynomial in the number of literals in the CNFSATISFIA-
BILITY instance. To show it works, we show that f’ has a satisfying solution if and only if f has a
satisfying solution.



Firstly, assume f has a satisfying solution, X 1,..., X1, ..., Xn,m, Where X;; is the value of
literal x; ;. For example, if z; ; = —v; and v has value TRUE in the satisfying assignment then
X, ; =FALSE. Now consider applying that clause to ¢;. At least one of the X; ; must be TRUE or
the solution would not be satisfying. Let X, be this TRUE literal. We can satisfy ¢} by setting
)\jgk,Q = FALSE and )‘j>k72 = TRUE.

Now assume f’ has a satisfying solution, Xi 1,..., X1, mys s Xnmn> A5y Apm,, —3. Consider
clause ¢; in f. We show that Xj 1,..., X, ,, satisfies ¢;. Clearly if A;; = TRUE or A; ;-3 =
FALSE, c¢; must be satisfied since one of X; 1, Xj 2, Xim,—1, or X; m, is TRUE. Therefore, assume
both A; 1 = FALSE and A;,,,—3 = TRUE. Then by construction there must be some (X\; j_2 V
x;; Vi j—1) in ¢ such that A; ;_o = FALSE and A; j_1 = TRUE. Since ¢} is satisfied, we must
have X; ; = TRUE and ¢; will also be satisfied.



