Heap Algorithms

PARENT(A,)
// Input: A: an array representing a heap, i: an array index
// Output: The index in A of the parent of i
/ Running Time: O(1)
1 if ¢ ==1 return NULL
return [i/2|

LEFT(A, 1)
// Input: A: an array representing a heap, i: an array index
// Output: The index in A of the left child of ¢
/ Running Time: O(1)
1 if 2 x4 < heap-size[A]
return 2 x4
3 else return NULL

RIGHT(A, 1)
// Input: A: an array representing a heap, i: an array index
// Output: The index in A of the right child of ¢
/ Running Time: O(1)
1 if 2xi+ 1 < heap-size[A]
return 2 x4+ 1
3 else return NULL

MaX-HEAPIFY(A, 1)

// Input: A: an array where the left and right children of 7 root heaps (but ¢ may not), i: an array index
// Output: A modified so that i roots a heap
/# Running Time: O(logn) where n = heap-size[A] — i
I + LEFT()
r < RIGHT(%)
if [< heap-size[A] and A[l] > Ali]
largest < 1
else largest < i
if r < heap-size[A] and A[r] < Allargest]
largest < r
if largest # i
exchange A[i] and A[largest]
MaX-HEAPIFY(A, LARGEST)

O © 00O Uk W

—_

BUILD-MAX-HEAP(A)

/ Input: A: an (unsorted) array
/ Output: A modified to represent a heap.
/ Running Time: O(n) where n = length[A]
1 heap-size[A] < length[A]
2 for i « |length[A]/2] downto 1
3 MAX-HEAPIFY(A, 1)

HEAP-INCREASE-KEY (A, i, key)

/ Input: A: an array representing a heap, é: an array index, key: a new key greater than Ali]
/ Output: A still representing a heap where the key of A[i] was increased to key
/ Running Time: O(logn) where n =heap-size[A]
if key < A[i]
error(“New key must be larger than current key”)
Ali] « key
while i > 1 and A[PARENT(4)] < A[i]
exchange A[i] and A[PARENT(i)]
i < PARENT(4)

O U W N

HEAP-SORT(A)

/ Input: A: an (unsorted) array
4/ Output: A modified to be sorted from smallest to largest
/ Running Time: O(nlogn) where n = length[A]
BuiLD-MAX-HEAP(A)
for i = length[A] downto 2

exchange A[1] and A[i]

heap-size[A] < heap-size[A] — 1

Max-HEAPIFY(A4, 1)

T W N~

HEAP-EXTRACT-MAX(A)

/ Input: A: an array representing a heap

/ Output: The maximum element of A and A as a heap with this element removed
/# Running Time: O(logn) where n =heap-sizeA]

max <+ A[l]

A[1] «+ Alheap-size[A]]

heap-size[A] < heap-size[A] — 1

Max-HEAPIFY (A, 1)

return max

U W N~

MAaX-HEAP-INSERT(A, key)

/ Input: A: an array representing a heap, key: a key to insert
// Output: A modified to include key
/ Running Time: O(logn) where n =heap-size[A]
1 heap-size[A] < heap-size[A] + 1
Alheap-size[A]] + —o0
3 HEAP-INCREASE-KEY(A[heap-size[A]], key)

1 Overview

e Overview of Heaps

Heap Algorithms (Group Exercise)

More Heap Algorithms!

Master Theorem Review

2 Heap Overview

Things we can do with heaps are:

e insert

e max

e cxtract_max
e increase_key
e build them

e sort with them

(Max-)Heap Property For any node, the keys of its children are less than or equal to its key.

3 Heap Algorithms (Group Exercise)

We split into three groups and took 5 or 10 minutes to talk. Then each group had to work their example
algorithm on the board.

Group 1: MaAX-HEAPIFY and BUILD-MAX-HEAP

Given the array in Figure 1, demonstrate how BUILD-MAX-HEAP turns it into a heap. As you do so,

make sure you explain:

e How you visualize the array as a tree (look at the PARENT and CHILD routines).

e The MAX-HEAPIFY procedure and why it is O(log(n)) time.

e That early calls to MAX-HEAPIFY take less time than later calls.

The correct heap is also shown in Figure 1.

Build-Max-Heap

Figure 1: The array to sort and the heap you should find.

Group 2: HEAP-INCREASE-KEY

For the heap shown in Figure 2 (which Group 1 will build), show what happens when you use HEAP-
INCREASE-KEY to increase key 2 to 22. Make sure you argue why what you're doing is O(logn). (Hint:
Argue about how much work you do at each level)

Increase this key to 22

Figure 2: The heap on which to increase a key. You should increase the key of the bottom left node (2)
to be 22.

Group 3: HEAP-SORT

Given the heap shown in Figure 3 (which Groups 1 and 2 will build for you), show how you use it to
sort. You do not need to explain the MAX-HEAPIFY or the BUILD-MAX-HEAP routine, but you should
make sure you explain why the runtime of this algorithm is O(nlogn). Remember the running time of

MaX-HEAPIFY is O(logn).

Figure 3: Sort this heap.

4 More Heap Algorithms

Note HEAP-EXTRACT-MAX and MAX-HEAP-INSERT procedures since we didn’t discuss them in class:

HEAP-EXTRACT-MAX(A)

max + A[l]

A[l] + Alheap-size[A]]
heap-size[A] <—heap-size[A] — 1
Max-HEAPIFY (A, 1)

return max

Tk W N

MAaX-HEAP-INSERT (A, key)

1 heap-size[A] < heap-size[A] + 1

2 Alheap-size[A]] + —o0

3 HEAP-INCREASE-KEY(A[heap-size[A]], key)

5 Running Time of BUILD-MAX-HEAP
Trivial Analysis: Each call to MAX-HEAPIFY requires log(n) time, we make n such calls = O(nlogn).

Tighter Bound: Each call to MAX-HEAPIFY requires time O(h) where h is the height of node i.
Therefore running time is

logn n logn h
> ST X O(h) = 0 <n > 2h>

h=0 N—— . . h=0
Number of nodes at height h Running time for each node
= h
h=0
= O(n) (1)

Note > 2, h/2" = 2.

6 Proving BuiLD-MAX-HEAP Using Loop Invariants

(We didn’t get to this in this week’s recitation, maybe next time).

Loop Invariant: Each time through the for loop, each node greater than i is the root of a max-heap.

Initialization: At the first iteration, each node larger than ¢ is at the root of a heap of size 1, which
is trivially a heap.

Maintainance: Since the children of ¢ are larger than i, by our loop invariant, the children of 7 are
roots of max-heaps. Therefore, the requirement for MAX-HEAPIFY is satisfied and, at the end of the
loop, index i also roots a heap. Since we decrement i by 1 each time, the invariant holds.

Termination: At termination, ¢ = 0 so ¢ = 1 is the root of a max-heap and therefore we have created
a max-heap.

Discussion: What is the loop invariant for HEAP-SORT? (All keys greater than ¢ are sorted).
Initialization: Trivial.

Maintainance: We always remove the largest value from the heap. We can call MAX-HEAPIFY because
we have shrunk the size of the heap so that the root’s children are root’s of good heaps (although the
root is not the root of a good heap).

Termination: =0

7 Master Theorem Review: More Examples

TRAVERSE-TREE(T)

1 if left-child(root[T]) == NULL and right-child(root[T]) == NULL return
2 output left-child(root|[T)), right-child(root[T)])

3 TRAVERSE-TREE(right-child(root[T]))

4 TRAVERSE-TREE(left-child(root[T]))

A~~~

Recurrence is T = 2T(n/2) + O(1). a = 2,b = 2,n°%(®) = n_f(n) = 1. Master Theorem Case 1,
Running Time O(1).

MuLTIPLY (2, y)

n + max(|z|,|y|) / |x| is size of x in bits

if n =1 return zy

xp +—z[l:n/2], zg x[n/24+1:n], yr < y[l:n/2], yr < y[n/2+1:n)
P, = MurtipLy(zy, yr,)

P, = MuLTIPLY (2R, YR)

P; = MurripLy(zy, + 2R,y + Yr)

return 2" P, +2"%(P; — P, — Py) + Py

~N OOtk W

Recurrence Relation: T'(n) = 3T(n/2) + O(n) (Note: Addition takes linear time in number of bits).
a=3,b=2n1) = ploss(2) f(n) = O(n), Case 1 of Master Theorem, O(n'°8s(2))

MATRIXMULTIPLY (X, Y')

1
2
3

0 N O Ut

n + sizeof(X) / Assume X andY are the same size and square

if n =1, return XY

A Split X andY into four quadrants:

A+ UpperLeft(X), B+ UpperRight(X), C + LowerLeft(X), D < LowerRight(X)

E «+ UpperLeft(Y), F « UpperRight(Y), G < LowerLeft(Y), H < LowerRight(Y)

UL < MATRIXMULTIPLY (A, E) + MATRIXMULTIPLY (B, G)

UR < MATRIXMULTIPLY(A, F) + MATRIXMULTIPLY(B, H)

LL < MaTrRIXMULTIPLY (C, E) + MATRIXMULTIPLY(D, G)

LR < MATrRIXMULTIPLY (C, F') + MATRIXMULTIPLY (D, H)

return matrix with UL as upper left quadrant, UR as upper right, LL as lower left, LR as lower right.

Recurrence Relation: T'(n) = 8T(n/2) + O(n?). a = 8,b = 2,n'°8(®) = p3 f(n) = n?. Case 1 of the
Master Theorem, O(n?).

