1 Review

1.1 Binary Search Trees

Problem: Figure out the rank of a node in O(logn) time. You may use augmentation. The rank of a
node is its position in a sorted list of the nodes.

Solution: We keep the number of children in a node’s right and left subtree (denoted as R(n) and
L(n)) as an augmentation. To find the rank of a node x, we begin with » = 0. We begin at the root
node and traverse the tree to find z. Every time we go right at a node n, we add r = r + L(n) + 1.
When we find z, we finally add » = r + L(z). The number r is the rank of z.

Augmentation: When inserting a node, we add 1 to a node’s right subtree if we go right and 1 to its
left subtree if we go left. Similarly with deleting except we subtract 1. For a left rotation, let & be the
element around which we are rotating and y be the new root. Then the number of children in z’s left
subtree remains unchanged and the number of children in its right subtree is the number is L(y). The
number of children in g’s right subtree remains unchanged and the number of children in its left subtree
is 1 4+ L(x) + R(x) (where L(z) and R(x) are after rotating z).

Extra point: We cannot keep a node’s rank as an augmentation because it cannot be kept updated in
O(logn) time through inserts and deletes. For example, inserting the smallest number into the tree
would require O(n) time to update the ranks of every other number.

Problem: Select the rth largest number from a balanced binary search tree in O(logn) time.

Solution: Use the same augmentation. Let k = r. When L(n) > k, search recursively for rank & in left
subtree. Otherwise, search recursively for rank &k — L(n) in right subtree.

Problem 2d from PSet2: Find the smallest node larger than ¢ such that the node’s successor is at
least 6 greater.

Solution: Store the number of gaps at least 6 in left and right subtrees. Now find the successor of ¢ in
the tree. If this successor has a gap, return it. Otherwise, if it has a gap in its right tree, recursively
search for the smallest number with a gap in the right tree. Otherwise, find the first node n such that n
is a left child and has a gap or has a gap in its right subtree. If n has a gap in its right subtree, search
that subtree for the smallest node with a gap.

Why does this work? Let the x-successor of ¢ be the node that is x nodes larger than ¢. So the 1-successor
is the successor of ¢ and the 2-successor is the successor of t’s successor etc. We want to find the smallest
x such that the z-successor of ¢ has a gap. Now the successor of a node is in its right subtree if it has one
or one of its ancestors if it does not. Therefore, if a node n does not have a gap in its right subtree, the
successor of the largest node in its right subtree is the first ancestor of n that is a left child. Therefore,
we check all z-successors until we find the first one with a gap.

1.2 Recursions

T(n)=T(n/3)+T(2n/3) + O(n).

Make a tree and solve it that way. Approximately logn levels, n work per level.



Can also do the Master Theorem examples from last week’s notes.

1.3 Hash Tables

Problem: We insert 4 items with keys k1, ko, k3, and k4 into a hash table of size m using linear probing
and assuming simple uniform hashing. What is the probability that inserting the fourth element requires
at least three probes?

Solution: We must have at least two elements adjacent to each other and k4 must hash to the top
one. There are several possible cases:

1. ko is above ky (1/m), ks is anywhere (1), k4 collides with ko (1/m): 1/m?

2. ky is below kq (2/m since ko could hash to kq or just hash to one below ki), ks is anywhere (1),
k4 collides with k; (1/m): 2/m?

3. etc. Actually these start to get pretty complicated. I only did the first two or three cases.

Problem: Assuming simple uniform hashing with chaining, after n insertions to a table of size m,
what is the probability the first slot has a chain of at least size 17

Solution: The probability that the ith key did not hash to the first slot is (m — 1)/m. Therefore the
probability that none of the keys hashed to the first slot is ((m — 1)/m)". Thus, the probability that at
least one key hashed to the first slot is 1 — ((m — 1)/m)".

1.4 Heaps

Question 4b from Spring 2008 exam. There is another solution that doesn’t use heaps, but the heap
solution is educational.



