
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology Sunday, April 25th
Professors Piotr Indyk and David Karger Problem Set 6

Problem Set 6
This problem set is divided into two parts: Part A problems are theory questions, and Part B
problems are programming tasks.

Part A questions are due Friday, May 7th at 11:59PM.
Part B questions are due Friday, May 7th at 11:59PM.

Solutions should be turned in through the course website in PDF form using LATEX or scanned
handwritten solutions.
A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as it will save you time spent on write-ups,
and also help you conceptualize the key idea of the problem.

Part A: Due Friday, May 7th
1. (25 points) Placing Parentheses

You are given an arithmetic expression containing n real numbers and n− 1 operators, each
either + or×. Your goal is to perform the operations in an order that maximizes the value of
the expression. That is, insert n− 1 pairs of parentheses into the expression so that its value
is maximized.

For example:

• For the expression 6 × 3 + 2 × 5, the optimal ordering is to add the middle numbers
first, then perform the multiplications: ((6× (3 + 2))× 5) = 150.

• For the expression 0.1×0.1+0.1, the optimal ordering is to perform the multiplication
first, then the addition: ((0.1× 0.1) + 0.1) = 0.11.

• For the expression (−3)× 3 + 3, the optimal ordering is ((−3)× 3) + 3) = −6.

(a) (10 points) Clearly state the set of subproblems that you will use to solve this problem.

Solution: First, we define some notation. Denote the numbers by a1, a2, . . . , an, and
the operators by op1, op2, . . . , opn−1, so the given expression is a1 op1 . . . opn−1 an.
Let M [i, j] be the maximum value obtainable from the subexpression beginning at ai

and ending at aj (i.e., ai opi . . . opj−1 aj), and let m[i, j] be the minimum value ob-
tainable from the subexpression beginning at ai and ending at aj .
We must keep track of both the minimum and the maximum because the maximal value
of an expression may result from multiplying two negative subexpressions.

2 Problem Set 6

(b) (10 points) Write a recurrence relating the solution of a general subproblem to solutions
of smaller subproblems.

Solution: To solve the subexpression aa . . . ab, we can split it into two problems
at the kth operator, and recursively solve the subexpressions aa . . . ak and ak+1 . . . ab.
In doing so, we must consider all combinations of the minimizing and maximizing
subproblems.
The base cases are M [i, i] = m[i, i] = ai, for all i.

M [a, b] = max
a≤k<b

(max(M [a, k] opk M [k + 1, b],

M [a, k] opk m[k + 1, b],

m[a, k] opk M [k + 1, b],

m[a, k] opk m[k + 1, b]))

m[a, b] = min
a≤k<b

(min(M [a, k] opk M [k + 1, b],

M [a, k] opk m[k + 1, b],

m[a, k] opk M [k + 1, b],

m[a, k] opk m[k + 1, b]))

(c) (5 points) Analyze the running time of your algorithm, including the number of sub-
problems and the time spent per subproblem.

Solution: There are O(n2) subproblems, two for each pair of indices 1 ≤ a ≤ b ≤ n.
The subproblem M [a, b] must consider O(b − a) = O(n) smaller subproblems. Thus
the total running time is O(n3).

2. (25 points) Pots of Gold

There are N pots of gold arranged linearly. Alice and Bob are playing the following game.
They take alternate turns, and in each turn they remove (and win) either of the two pots at
the two ends of the line. Alice plays first. Given the amount of gold in each pot, design an
algorithm to find the maximum amount of gold that Alice can assure herself of winning.

(a) (10 points) Clearly state the set of subproblems that you will use to solve this problem.

Solution: Let g1, g2, . . . , gN be the amount of gold in the N pots. For any 1 ≤ i ≤
j ≤ N , let G[i, j] be the maximum amount of gold that the player who plays first can
assure herself of winning if the problem instance only had pots i, i + 1, . . . , j.

Problem Set 6 3

(b) (10 points) Write a recurrence relating the solution of a general subproblem to solutions
of smaller subproblems.

Solution: If j > i,

G[i, j] = max(

j∑
k=i

gk −G[i + 1, j],

j∑
k=i

gk −G[i, j − 1]),

else if j = i, G[i, j] = gi.

(c) (5 points) Analyze the running time of your algorithm, including the number of sub-
problems and the time spent per subproblem. Hint: your overall algorithm should be
O(N2).

Solution: Precompute
∑j

k=i gk for every 1 ≤ i ≤ j ≤ N in O(N2) time. Then,
each subproblem takes O(1) time; since there are O(N2) subproblems, the total time
complexity is O(N2).

