
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology April 11, 2010
Professors Piotr Indyk and David Karger Problem Set 4

Problem Set 4
This problem set is divided into two parts: Part A problems are theory questions, and Part B
problems are programming tasks.

Part A questions are due on Matt’s Birthday, Tuesday, April 6th at 11:59PM.
Part B questions are due Thursday, April 8th at 11:59PM.

Solutions should be turned in through the course website in PDF form using LATEX or scanned
handwritten solutions.
A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as it will save you time spent on write-ups,
and also help you conceptualize the key idea of the problem.

Part A: Due Tuesday, April 6th

1. (20 points) Reasoning about Search

For each of the following statements, prove the statement or give a small counter example to
show that it is false. You may use LATEX to draw example graphs if necessary (the solution
template contains a drawing of the following graph to get you started).

r r r
r r r
r r r

-

6

�
�
��

(a) (6 points) A cyclic directed graph G has exactly one back edge produced by DFS. It is
possible to remove one edge from G to make G acyclic.

Solution:
True. As stated in 22.11 in CLRS, a graph is cyclic if and only if DFS yields at least
one back edge. Since the back edge is not in the DFS tree, if we remove it, we will still
have the same DFS tree, which will have no back edges. Thus, the new graph will be
acyclic.

2 Problem Set 4

(b) (6 points) If a directed graph G has some vertices u and v in the same DFS tree and
the DFS finishing time for v is after that of u then v is an ancestor of u in the DFS tree.

Solution:
False. Two children of the same parent must have one node with a DFS finishing time
earlier than the other, but neither is an ancestor of the other. A counterexample is shown
below.

r r r
r r r
r r r

-�
�
��

(c) (8 points) A graph G with n vertices can have DFS produce a tree with depth n − 1
while BFS on G will have depth of only 1. A root node is defined as having depth 0.
(Note: if an example is difficult to draw with LATEX vectors you may use text to describe
it)

Solution:
True. Consider a “wheel” model with a central hub node with edges going to all nodes
along the rim. Each rim node has an edge to the next node circularly. BFS starting with
the central node will find all rim nodes with depth 1, while DFS from that central node
will find all rim nodes sequentially with depth n− 1.

2. (14 points) Bipartite graphs

An undirected graph is called bipartite if its nodes can each be assigned a color, either red
or blue, such that no red node is adjacent to another red node, and no blue node is adjacent
to another blue node. Give an efficient algorithm to determine if a graph is bipartite. What
is its running time?

Hint: You may want to relate bipartiteness of a graph to the presence/absence of odd length
cycles in it.

Solution: Use breadth-first search repeatedly (in case the graph is not connected). Assign
the starting point to be red, those at odd depth from the starting point to be blue, and those at
even depth to be red. When visiting a node and a neighbor has already been visited, check
that they do not have the same color. If they do, return “graph is not bipartite”. There can
be no other configuration of the graph coloring which allows for bipartiteness because given
only two colors, the colors on opposite ends of an edge must be different so coloring starting
from a single source will always yield the same coloring. Starting at a different node will
yield the same coloring as well because the graph is undirected. If all nodes are successfully
colored, return “graph is bipartite”. This runs in O(V + E), the running time of BFS.

Problem Set 4 3

Argument using odd length cycles: In an odd length cycle, coloring with two alternating
colors from some start node will end with the last node having the same color as the start
node. Thus, any graph containing an odd cycle cannot be bipartite. The above algorithm
uses BFS, so any node colored blue is an odd distance away from the starting point while
any node colored red is an even distance away from the starting point. If an attempt is
made to color a node both colors, this means it is both an odd and even distance from the
source node, for an odd total number of nodes in the cycle passing through it, thus a bipartite
coloring is impossible.

3. (16 points) Flight Planning

You are traveling an island nation with N cities. You start at city 1 at time 0 and need to
get to city N no later than time T . There are M flights each of which flies from some city
to some other city. All flights leave at an integer hour and arrive at an integer hour. That is,
each flight i leaves some city ai at an integer time til and arrives at another city bi at integer
time tia > til. Assume that if you arrive in a city at time t and there is a flight leaving at time
t then you can make the transfer.

Given the times of the M flights, propose an algorithm based on BFS for determining
whether there is a way to get from city 1 to city N in no more than time T . Your algo-
rithm should run in O(N · T + M) time.

Solution:
Construct a graph G = (V, E), where vertices v = (a, t) represent a tuple denoting a partic-
ular city a and some time t < T . For each city and each time (hour) we have a corresponding
vertex in the graph. Therefore in total we have N ·T number of vertices. For every flight that
leaves city ai at time til and reaches city bi at time tia, we add an edge from vertex (ai, til)
to (bi, tia). There are M such edges. Also, for staying in a city when there are no flights
available we add an edge from vertex (a, t) to vertex (a, t + 1) for all cities a and time t.
There are N ·T such edges. Therefore graph G has |V | = N ·T and |E| = N ·T +M . Now
we can perform a BFS from start vertex (1, 0) and find out if the node (N, T) is reachable.
This runs in O(V + E) time, i.e. O(N · T + M) time.

