
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology February 18th, 2010
Professors Piotr Indyk and David Karger Handout 3

Problem Set 2
This problem set is divided into two parts: Part A problems are theory questions, and Part B
problems are programming tasks.

Part A questions are due Tuesday, March 2nd at 11:59PM.
Part B questions are due Thursday, March 4th at 11:59PM.

Solutions should be turned in through the course website. Your solution to Part A should be in
PDF form using LATEX or scanned handwritten solutions. Your solution to Part B should be two
valid Python files which runs from the command line, together with one PDF file containing your
solutions to part (a), (b), (e) and the optional part (f).
Templates for writing up solutions in LATEX are available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as it will save you time spent on write-ups,
and also help you conceptualize the key idea of the problem.

Part A: Due Tuesday, March 2nd
1. (14 points) Building a Balanced Search Tree from a Sorted List

You are given a sorted Python list containing n distinct numbers.

(a) (4 points) Show how to construct a binary search tree containing the same numbers.
The tree should be roughly balanced (its height should be O(log n)) and the running
time of your algorithm should be O(n).

Solution: Let constructBST(L,i,j) be the function that takes the list L with
starting index i and ending index j and creates its corresponding balanced binary search
tree, and returns the root. constructBST(L,0,n-1)will select the middle node of
L and make it the root of the tree, then it recursively calls constructBST(L,0,n/2-1)
and constructBST(L,n/2+1,n-1) to get the left and right child of the root re-
spectively.

(b) (5 points) Argue that your algorithm returns a tree of height O(log n). Note: It is
probably easier to prove an absolute bound (such as 1 + log n or 2 log n) than to use
asymptotic notation in the argument.

Solution: For any node n in the tree returned by constructBST, the heights of the
left and right subtree of n can only differ by 1. The algorithm always selects the middle
element to make the root, therefore the number of nodes in the left and right subtree
size can at worst differ by 1, and since the same algorithm (which only depends on the
size) is called upon both the sublists the heights of the left and right subtree can atmost



2 Handout 3: Problem Set 2

differ by 1. Let T be the tree returned by the algorithm and T1 and T2 be the left and
right subtree of the root node of T , and h(T ) denotes the height of the tree T . We have
h(T ) = max(h(T1), h(T2)) + 1
max(h(T1), h(T2)) ≤ h(T1) + 1,
h(T ) ≤ h(T1) + 2
The algorithm runs for log n steps as every time the list gets halved, so
h(T ) ≤ 2 log n.

(c) (5 points) Argue that the algorithm runs in O(n) time (here it is hard to avoid the
asymptotic notation, so use asymptotic notation).

Solution: Since every node in the list L is visited exactly once and there are constant
number of operations done per visited node, the algorithm takes O(n) time. We can
also write the recurrence equation for the running time
T (n) = 2 · T (n/2) + Θ(1), which gives us a running time of Θ(n).

2. (18 points) Range Queries for a Balanced Search Tree

We use balanced binary search trees for keeping a directory of MIT students. We assume that
the names of students have bounded constant length so that we can compare two different
names in O(1) time. Let n denotes the number of students. Say we have a binary search tree
with students’ last names as the keys with lexicographic dictionary ordering. In this problem
we are going to use the balanced search tree to answer some range queries of the students’
last names.

For example, if the tree contains 5 names {ABC, ABD, ADA, ADB, ADC}, then all the 5
names are (inclusively) between ABC and ADC. There are two names, namely ABC and
ABD, start with the prefix x=AB.

(a) (6 points) Given two strings a and b with a < b, give an algorithm that returns all the
nodes whose key values are (inclusively) between a and b. If the total number of such
nodes is k, then the running time of your algorithm should be O(k + log n).

Solution: Consider the following procedure for traversing the tree.

traverse(tree, (a, b)):
if tree is empty then

return
x := the key at the root of tree
if (a ≤ x and x ≤ b) then

traverse(left subtree of tree, (a, x))
output(x)
traverse(right subtree of tree, (x, b))

elseif x > b then
traverse(left subtree of tree, (a, b))

else
traverse(right subtree of tree, (a, b))



Handout 3: Problem Set 2 3

It suffices to run traverse(the entire balanced BST, (a, b)) to find all the nodes whose
names are between a and b. The algorithm has the following properties:

• It finds all nodes whose names are in [a, b], because it includes the rootnode of any
tree if the rootnode has its name in [a, b] and it never excludes a subtree that could
contain a name in [a, b].

• It only outputs names that are in [a, b].
• The running time is O(k+log n), because at each depth it visits at most two nodes

whose names are not in [a, b] (namely, the visits use for checking the two ends).
Therefore, it visits at most 2 ·O(log n) + k nodes.

(b) (6 points) Give an algorithm that outputs a list of all the nodes whose keys starts with
a given prefix x in O(k + log n) time, where k is the number of nodes in the list.

Solution: Consider the following procedure for traversing the tree.

traverse(tree, prefix):
if tree is empty then

return
name := the last name at the root of tree
if prefix is a prefix of name then

traverse(left subtree of tree, prefix)
output(name)
traverse(right subtree of tree, prefix)

elseif prefix < name then
traverse(left subtree of tree, prefix)

else
traverse(right subtree of tree, prefix)

It suffices to run traverse(the entire balanced BST, x) to find all last names with
prefix x. The algorithm has the following properties:

• It finds all names with prefix x, because it never excludes a subtree that could
contain a name with prefix x.

• It only outputs names with x as a prefix.
• The running time is O(k+log n), because at each depth it visits at most two nodes

for which x is not a prefix. Therefore, it visits at most 2 ·O(log n) + k nodes.

(c) (6 points) Give an algorithm to count the number of nodes whose keys start with a
given prefix x in O(log n) time, independent of the number of such nodes. You are
allowed to augment the binary search tree nodes.

Solution: We can use a similar augmentation of Number of nodes in the left subtree
and right subtree which we used for finding the Rank of a node (covered in the recita-
tion). First traverse down the tree to find a node xfirst which starts with the prefix x.
Then traverse the left subtree of xfirst to find the minimum node xmin(lexicographically)
which starts with prefix x. Traverse the right subtree of xfirst to find the largest node



4 Handout 3: Problem Set 2

xmax (lexicographically) that starts with prefix x. xfirst, xmin and xmax can be found
in O(log n) time. Using the augmentation we can find the ranks of xmin and xmax. The
required number of nodes is equal to Rank(xmax)− Rank(xmin) + 1.

3. (18 points) Collision Resolution

Assume simple uniform hashing in the entire problem.

(a) (6 points) Consider a hash table with m slots that uses chaining for collision resolution.
The table is initially empty. What is the probability that, after four keys are inserted,
there is a chain of size 4?

Solution: For a chain of size 4, all the four keys should hash to the same value. The
first key can hash to any slot in the table. The second, third and the fourth key need to
hash to the same slot. The probability of hashing to a particular slot with m slots under
simple uniform hashing is 1/m, so the required probability is 1/m × 1/m × 1/m =
1/m3.

(b) (6 points) Consider a hash table with m slots that uses open addressing with linear
probing. The table is initially empty. A key k1 is inserted into the table, followed by
key k2. What is the probability that inserting key k3 requires three probes?

Solution: Inserting k3 in the table would require three probes iff the first two probes
hit occupied slots. Since we have two keys in the table k1 and k2, they need to be
consecutive and k3 should hash to the one which is above of the two. So we have two
cases:

i. k2 is above of k1 : k1 is free to hash to any slot and k2 should hash to the slot above
k1. So the probability for this case is 1/m.

ii. k2 is below k1: k1 is free to hash to any slot. Now for k2 to hash to the next slot, it
can either hash to the same slot occupied by k1 or it can hash directly to the next
slot. So k2 has 2 places to hash to, therefore the probability of this case is 2/m.

Now for k3 to require 3 probes for insertion, it should hash to the key above of the two
k1 and k2, so the total probability k3 hashing to the above slot is: (1/m+2/m)×1/m =
3/m2.

(c) (6 points) Suppose you have a hash table where the load-factor α is related to the
number n of elements in the table by the following formula:

α = 1− 1

log n
.

If you resolve collisions by open addressing, what is the expected time for an unsuc-
cessful search in terms of n?

Solution: According to materials covered in recitation as well as Theorem 11.6
in CLRS (2nd edition), the expected time taken by an unsuccessful search in open



Handout 3: Problem Set 2 5

addressing (under the Uniform Hashing assumption) is T (α) ≤ 1
1−α

. Plugging in
α(n) = 1− 1/ log n, we get

T (α) ≤ log n.


