Introduction to Algorithms March 10, 2010
Massachusetts Institute of Technology 6.006 Spring 2010
Professors Piotr Indyk and David Karger Quiz 1

Quiz 1

e Do not open this quiz booklet until directed to do so. Read all the instructions on this page.

e When the quiz begins, write your name on every page of this quiz booklet.

e You have 120 minutes to earn 120 points. Do not spend too much time on any one problem.
Read them all through first, and attack them in the order that allows you to make the most
progress.

e This quiz is closed book. You may use one 81" x 11” or A4 crib sheet (both sides). No
calculators or programmable devices are permitted. No cell phones or other communications
devices are permitted.

e Write your solutions in the space provided. If you need more space, write on the back of the
sheet containing the problem. Pages may be separated for grading.

e Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite
known results.

e When asked for an algorithm, your algorithm should have the time complexity specified in
the problem. If you cannot find such an algorithm, you will generally receive partial credit
for a slower algorithm if you analyze your algorithm correctly.

e Show your work, as partial credit will be given. You will be graded not only on the correct-
ness of your answer, but also on the clarity with which you express it. Be neat.

e Good luck!

’ Problem \ Parts \ Points \ Grade \ Grader ‘

1 2 2
2 9 18
3 3 20
4 1 20
5 2 25
6 3 20
7 2 15

Total 120

Name:
Friday Zuzana Debmalya Ning Matthew Alina Alex

Recitation: 10 AM 11 AM 12 PM 1PM 2 PM 3PM

6.006 Quiz 1 Name

Problem 1. What is Your Name? [2 points] (2 parts)

(a) [1 point] Flip back to the cover page. Write your name there.

(b) [1 point] Flip back to the cover page. Circle your recitation section.

6.006 Quiz 1 Name 3

Problem 2. True or False [18 points] (9 parts)

For each of the following questions, circle either T (True) or F (False). There is no penalty for
incorrect answers.

(@ T F [2 points] Given two heaps with n elements each, it is possible to construct a
single heap comprising all 2n elements in O(n) time.

Solution: TRUE. Simply traverse each heap and read off all 2n elements into
a new array. Then, make the array into a heap in O(n) time by calling MAX-
HEAPIFY for ¢ = 2n down to 1.

(b) T F [2 points] Building a heap with n elements can always be done in O(nlogn)
time.

Solution: TRUE. In fact, we can build a heap in O(n) time by putting the
elements in an array and then calling MAX-HEAPIFY for ¢ = n down to 1.

(¢ T F [2 points] Given a hash table of size n with n elements, using chaining, the
minimum element can always be found in O(1) time.

Solution: FALSE. We will need to scan the entire table; this takes €2(n) time.

(d) T F [2 points] Running merge sort on an array of size n which is already correctly
sorted takes O(n) time.

Solution: FALSE. The merge sort algorithm presented in class always divides
and merges the array O(logn) times, so the running time is always O(nlogn).

(¢) T F [2points] We can always find the maximum in a min-heap in O(log n) time.

Solution: FALSE. The maximum element in a min-heap can be anywhere in the
bottom level of the heap. There are up to n/2 elements in the bottom level, so
finding the maximum can take up to O(n) time.

(f) T F [2points] In a heap of depth d, there must be at least 2¢ elements. (Assume the
depth of the first element (or root) is zero).

6.006 Quiz 1 Name

(g TF

(h) TF

@M TF

Solution: TRUE. The minimum number of elements in a heap of depth d is
one more than the maximum number of elements in a heap of depth (d — 1).

Since a level at depth d in a binary heap can have up to 2¢ elements, the number
d—1

of elements at depth (d — 1) is Z 20 = 2¢ — 1. So the minimum number of
i=0
elements in a heap of depth d is (2¢ — 1) + 1 = 24,

[2 points] Consider a family of hash functions {A,} hashing an r-bit number to
an s-bit number (r > s). This family is defined by h,(z) = (xxora)mod 2°,
where “xor” represents binary exclusive or and where a is a randomly chosen
r-bit number.

This hash function family is 2-universal.

Solution: FALSE. Note that for all (r — s)-bit numbers k, the keys & - 2° all
hash to a mod 2°. This means that the keys 2°, 2 - 2°, 3 - 2°, etc. always collide
regardless of the value of a. This means that the hash values are not pairwise
independent and thus that the hash function family is not 2-universal.

[2 points] Inserting an element into a binary search tree of size n always takes
O(logn) time.

Solution: FALSE. Inserting an element into a binary search tree takes O(h)
time, where h is the height of the tree. If the tree is not balanced, A~ may be much
larger than log n (as large as n — 1).

[2 points] Any two (possibly unbalanced) BSTs containing n elements each can
be merged into a single balanced BST in O(n) time.

Solution: TRUE. Use in-order traversal of the two BSTs to create two sorted
lists of length n in O(n) time, merge them into a single sorted list of length 2n in
O(n) time, and then create a balanced BST from the sorted lists in O(n) time.

6.006 Quiz 1 Name

Problem 3. Asymptotics & Recurrences [20 points] (3 parts)

(a)

(b)

()

[10 points] Rank the following functions by increasing order of growth. That is,
find any arrangement ¢, g, g3, 94, g5, gs, g7 of the functions satisfying g1 = O(g2),

92 = 0(g3), 93 = O(94), 92 = O(gs5), g5 = O(gs)> g6 = O(gr)-

filn) =n*+logn fo(n) =n+ log*n fa(n) =nlogn fi(n) = (n)

3
g = () = folm) = e
Solution:
fi(n) =0 (n4) fo(n) =0 (n) fz3(n) =0 (nlogn)
_nn—1)(n—-2) 3 - . egn o(logn)?
film) = " IEEE 0 () fyn) = 0(2) i) = o= =2

We can determine the asymptotic complexity of f5 by using Stirling’s approximation,

n! = /2mn (n/e)":

) = o e L 2oy

nz = n
((n/2)1) (o (nT{Q> /2) 2mn
Thus, the correct order is (from slowest to fastest growing):

f27f37f47f17f7af57f6

[5 points] Find an asymptotic solution of the following functional recurrence. Express
your answer using ©-notation.

T(n)=9-T(n/3)+n?

Solution: Using the master theorem, a = 9, b = 3, and log, a = log3 9 = 2. Thus,
we compare n'°® % = n? to f(n) = n3. Since n® = Q (n?*°), f(n) dominates the
recurrence and we are in Case 3 of the master theorem. Thus, 7'(n) = © (n?).

[5S points] Find an asymptotic solution of the following functional recurrence. Express
your answer using ©-notation.

T(n)=2-T(n/4)++/n

Solution: Using the master theorem, a = 2, b = 4, and log, a = log, 2 = 1/2. Thus,
we compare n'°2® = n'/2 to f(n) = \/n. Since these are asymptotically equivalent,
we are in Case 2 of the master theorem. This means that we gain an additional log n
factor and T'(n) = © (y/nlogn).

6.006 Quiz 1 Name 6

Problem 4. Median of Lists [20 points]

You are given two lists of integers, each of which is sorted in ascending order and each of which
has length n. All integers in the two lists are different. You wish to find the n-th smallest element
of the union of the two lists. (That is, if you concatenated the lists and sorted the resulting list in
ascending order, the element which would be at the n-th position.) Present an algorithm to find
this element in O(logn) time. You will receive half credit for an O ((log n)?)-time algorithm.

Solution: Assuming the lists /1 and [2 have constant access time to any of their elements, we
can use a modified version of binary search to get an O(logn) solution. The easiest approach is to
search for an index p1 in just one of the lists and calculate the corresponding index p2 in the other
list so that pl 4 p2 = n at all times. (This assumes the lists are indexed from 1.)

First we check for the special case when all elements of one list are smaller than any element in
the other list:

If I1[n] < (2[0] return [1[n].

If [2[n] < (1]0] return [2[n)].

If we do not find the n-th smallest element after this step, call findNth(1, n) with the approximate
pseudocode:

findNth(start,end)
pl = |(start 4+ end) /2]
p2 =n—pl

if [1[pl] < 2[p2]:
if [1[pl + 1] > 12[p2]:
return [2[p2]
else:
return findNth(p1+1, end)
else:
if 12[p2 + 1] > [1|pl]:
return 11[p1]
else:
return findNth(start,p1-1)

Element [2[p2] is returned when [2[p2] is greater than exactly pl + p2 — 1 = n — 1 elements
(and therefore is the n-th smallest). [1[p1] is returned under the same but symmetric conditions. If
[1[p1] < 12[p2] and I1][pl +1] < [2[p2], the rank of [2[p2] is greater than n, so we need to take more
elements from /1 and less from [2. Therefore we search for pl in the upper half of the previous
search interval. On the other hand, if [2[p2] < [1[pl] and [2[p2 + 1] < [1[pl], the rank of [1[p1] is
greater than n. Therefore the real pl will lie in the bottom half of our current search interval.

6.006 Quiz 1 Name 7

Since we are halving the size of the problem at each call to findNth and we need to do only
constant work to halve the problem size, the recurrence for this algorithm is 7'(n) = T'(n/2) +
©(1), which has an O(log n)-time solution.

The O(log® n) solution (awarded at most 10 points) uses alternates binary search on each list. In
short, it takes the middle element in the current search interval in the first list (/1[p1]) and searches
foritin /2. Since the elements are unique, we will find at most 2 values closest to [1[p1]. Depending
on their values relative to [1[pl — 1] and [1[p1 + 1] and their indices p2; and p2,, we either return
the n-th element or recurse: If the sum of any out of the (at most) 3 indices in /1 can be combined
with one of the (at most) 2 indices in [2 so that [1[p1’] and [2[p2’] would be right next to each other
in the sorted union of the two lists and p1’ 4+ p2’ = n or pl’ + p2’ = n + 1, we return one of the 5
elements. If pl + p2 > n, we recurse to left half of the search interval in /1, otherwise we recurse
to the right interval. This way, for out of the O(log n) possible midpoints in /1 we do an O(logn)
binary search in /2. Therefore the running time is O(log® n).

The O(n) solution (awarded at most 5 points) does a modified merge operation (without the need
to copy the elements into a new array) and stops when it reaches the n-th element.

6.006 Quiz 1 Name

Problem 5. Party Conversation [25 points] (2 parts)

You are attending a party with n other people. Each other person 7 arrives at the party at some time
s; and leaves the party at some time ¢; (where s; < ;). Once a person leaves the party, they do not

return.

Additionally, each person ¢ has some coolness c;. At all times during the party, you choose to talk
to the coolest person currently at the party. (All coolness values are distinct.) If you are talking to
someone, and someone else cooler arrives at the party, you leave your current conversation partner
and talk to the new person. If the person you are talking to leaves the party, you go talk to the
coolest person remaining at the party. (This might or might not be a person with whom you have

already talked.)

You are the first to arrive at the party and the last to leave. Additionally, you are the most popular

person at the party, so everyone wants to talk with you.

(a)

(b)

[15 points] Describe a data structure which allows you to decide in O(1) time to whom
you should talk at any moment. You should be able to update this data structure in
O(log n) time when someone arrives or leaves.

Solution: Build a max-heap H,.,, with each person’s coolness as the key. Build
another min-heap H;;,,. with each person’s leaving time as the key (so the coolest
person at that moment will be at the root of H.,,, and the person leaving the earliest
will be at the root Hy;,,.). Storing with the keys in the two heaps, we also store the
index of the person. We also maintain an array links of size n which stores the current
index of person 7 in H.,, and index in Hy;,.. (This is important. Most students did
not do this, and without this there is no way to find the node to delete from the heap
when somebody leaves).

We use Heap — Maz(H..) to decide with person you should talk to. If somebody
leaves, use Fxtrac — Min(Hyme) to find who is leaving. Suppose the person to
leave is i. Use the array links to get the index of person ¢ in H.,, and Heap —
Delete(H oo, index(i)).

When a person j comes, perform Heap—Insert(Heool, ¢;), Heap—Insert(Hyme, t;)
and store the indices of person j in the two heaps into array links.

Since Heap — Max() can be done in O(1) time, and both Heap — Insert() and
Heap— Delete() can be done in O(h) = O(logn) time, so this data structure satisfies
the requirements.

[10 points] If you know in advance when each person will arrive at and depart from
the party, describe an O(n logn)-time algorithm to compute the total amount of time
that you will spend talking with each person.

Solution: Given {s;,¢;}, we first sort them in increasing order in O(nlogn) time
(you may instead assume the times are given as sorted, but you must explicitly say

6.006 Quiz 1 Name

so). While sorting these numbers, we keep track of the index of the person to which
each time belong to and also if this is a arrival time or a departure time. We use an
array of size n to store the start talking time and cumulative duration of each person.
Initially, the cumulative duration is set to 0 and start talking time is set to N/ L for
each person. We use the dynamic data structure built in part (a) and initially we set the
two heaps to be empty. We then linearly scan the sorted times of arrival/departure and
after reading each number, we update the data structure built in part(a) to decide who
you are talking to. When you start talking to a person ¢, we update the start talking
time of 7. When you stop talking to person ¢ (this can happen if 7 leaves or some
cooler person arrives), we subtract ¢’s start talking time from the current time to get
the duration of this talk and increment the cumulative duration of ¢ (since you may
talk to ¢ again at a later time). Since each such update takes at most O(log n) time and
there are at most 2n such updates (that is, we update only when someone comes or
leaves), so the total time to compute the values in the array is O(nlogn).

6.006 Quiz 1 Name

Problem 6. Space Efficient Sets [20 points] (3 parts)

In this problem, we will use hashing to test membership of an element in a set. Suppose we have
a set S of n elements and we need to build a data structure that efficiently answers queries of the
is x in S? Ben Bitdiddle comes up with the following idea: construct a hash table 7" of size
m > n, where each entry of the hash table is a single bit. Now, use a hash function / to map each
element in S to an index in the hash table, and set the corresponding bit of 7" to 1. Thus, T7[i] = 1

form:

iff i = h(y) for some y € S. His search strategy is simply to output yes iff T'[h(x)] = 1.

(a)

(b)

(c)

[7 points] Assume simple uniform hashing. If = ¢ S, what is the probability that the
algorithm answers yes? (This is called the probability of a false positive.)

Solution:
—(— Ly
m

We do not want to find the probability of a given space already being filled directly
because we cannot assume that all n elements went to different buckets. Rather, we
should think of this in terms of the probability that the bucket which z hashes to has
not been filled and then subtract this from 1.

Answers of =, which would be correct if this were an open addressing system or if

one ignored independence, were given partial credit with appropriate explanation.

[3 points] If x € S, what is the probability that the algorithm answers no? (This is
called the probability of a false negative.)

Solution: Zero

Given that = € S, the corresponding bit, 7'[h(x)] has been set to 1. There is no method
given to set any bit to 0, so the algorithm will always find that bit set to 1 and return
yes.

[10 points] Ben Bitdiddle changes the algorithm to use £ hash functions hq, hs, . .., hy
as follows: we now set T'[i| = 1iff i = h;(y) forsomey € S,j € {1,2,...,k} and
answer yes iff T'[h;(z)] = 1 forall j € {1,2,...,k}. Assuming that hash functions
are independent and each hash function satisfies the assumption of part (a), what is the
probability of a false positive now?

Solution:)
nk\k

(1= (1= —)™
This is the probability of a false positive for all £ hashes of x. This is similar to the
solution of part (a) but because each element of n is hashed & times we have £ times
as many hashes in the table.
Solutions neglecting the additional &k factor or again neglecting independence were
given partial credit with appropriate explanation.

6.006 Quiz 1 Name 11

Problem 7. Modal Weights [15 points] (2 parts)

You are given a collection of n iron weights of varying masses. Some weights have the same mass
and some weights have different masses. You would like to find the size of the largest possible
sub-collection of weights that all have the same mass.

(a) [8 points] Assume that the weights are unlabeled and that your only tool for compar-
ing them is a balance scale which will compare two weights. The balance will tell you
which weight is more massive, or tell you that they have the same mass. If there are k
distinct mass values represented by the n weights, give an O(n log k)-time algorithm
for finding the size (the number of weights) of the largest collection of equal weights.

Solution: We construct an AVL tree on the weights. Each node of the AVL tree rep-
resents a unique mass corresponding to at least one weight in the collection. Observe
that the value of the mass represented by a node is unknown; instead, a node (say,
representing mass m) comprises a pointer to some weight having mass m (call this
weight the witness for the node). Additionally, the node has a field where the number
of weights with mass m is stored (call it the frequency of the node). Recall that the
construction of an AVL tree from an unordered list of length n is a sequence of n
insertions. So, it is sufficient to define the insertion procedure for a single weight in
the AVL tree. To insert a new weight w, we compare the weight with the witness for
the root node (call it r) using the balance, and do one of the following depending on
the result of the comparison:

e if w is lighter than r, then recursively insert w in the left sub-tree,
e if w is heavier than r, then recursively insert w in the right sub-tree, and
e if w and r have equal weight, increment the frequency of the root node by 1.

If the sub-tree we are inserting into is empty, then create a new node as the root of
the sub-tree, set w as its witness, initialize its frequency to 1, and rebalance the tree
if necessary. Since the AVL tree has a unique node for each mass, and there are k
different masses, the depth of the AVL tree is O(log k). Thus, the n insertions take
O(nlog k) time.

Once all weights have been inserted, traverse the AVL tree pre-/post-/in-order keeping
a running maximum over the frequency values. The maximum frequency is returned
by the algorithm. This traversal takes time proportional to the number of nodes in the
tree, i.e. O(k). Thus, the overall time complexity is O(nlogk) + O(k) = O(nlogk).
(Note: Alternatively, we can maintain a running max while constructing the AVL tree
as well.)

(b) [7 points] Now assume that you find a digital scale, which can tell you the exact mass
of a weight. Now give an O(n)-time algorithm to accomplish the same task.

6.006 Quiz 1 Name

Solution: We use a hash table of size 2k where we store the unique mass values
corresponding to the weights. Additionally, each hash table bucket has a frequency
field that stores the number of weights whose mass is represented by the bucket. We
weigh each weight, and hash its mass value into this table. If there is a collision,
there are two possibilities: (1) if the masses are identical, we increment the frequency
value, and (2) if the masses are unequal, we resolve collisions by open addressing.
Finally, we scan each entry of the hash table to find the mass value with the maximum
frequency. Since there are k distinct mass values and the size of the table is 2k, the
expected time for each insertion is O(=5z) = O(1). Using linearity of expectation,
the expected time for all insertions is O(n). The final scan takes O(k) time; so the
overall time complexity is O(n) in expectation.

(Note: As in part (a), the scan at the end is not required, we can maintain a running
max during the insertions.)

12

SCRATCH PAPER

SCRATCH PAPER

