
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology Wednesday, April 22nd
Professors Sivan Toledo and Alan Edelman Handout 14

Problem Set 6
This problem set is divided into two parts: Part A problems are programming tasks, and Part B
problems are theory questions.

Part A questions are due Tuesday, May 5th at 11:59PM.
Part B questions are due Thursday, May 7th at 11:59PM.

Solutions should be turned in through the course website in PDF form using LATEX or scanned
handwritten solutions.
A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as it will save you time spent on write-ups,
and also help you conceptualize the key idea of the problem.

Part A: Due Tuesday, May 5th

1. (25 points) Image Resizing

In a recent paper, “Seam Carving for Content-Aware Image Resizing”, Shai Avidan and Ariel
Shamir describe a novel method of resizing images. You are welcome to read the paper, but
we recommend starting with the YouTube video:

http://www.youtube.com/watch?v=vIFCV2spKtg

Both are linked to from the Problem Sets page on the class website. After you’ve watched
the video, the terminology in the rest of this problem will make sense.

If you were paying attention around time 1:50 of the video, then you can probably guess
what you’re going to have to do. You are given an image, and your task is to calculate the
best vertical seam to remove. A vertical seam is a connected path of pixels, one pixel in each
row. We call two pixels connected if they are vertically or diagonally adjacent. The best
vertical seam is the one that minimizes the total “energy” of pixels in the seam.

For some reason, the video didn’t spend much time on the most interesting part—dynamic
programming—so here’s the algorithm:

Subproblems: For each pixel (i, j), what is the lower-energy seam that starts at the top row
of the image, but ends at (i, j)?

Relation: Let dp[i,j] be the solution to subproblem (i, j). Then
dp[i,j] = min(dp[i,j-1],dp[i-1,j-1],dp[i+1,j-1]) + energy(i,j)



2 Handout 14: Problem Set 6

Analysis: Solving each subproblem takes O(1) time: there are three smaller subproblems to
look up, and one call to energy(), which all take O(1) time. There is one subproblem
for each pixel, so the running time is Θ(A), where A is the number of pixels, i.e., the
area of the image.

Find ps6_image.py. You will need to installed PIL (Python Imaging Library, freely
available from http://www.pythonware.com/products/pil/), and Tkinter if
you want to view images. If you are using Athena (Linux), add -f 6.006 and run
python2.5.

In ResizeableImage.py, write a function best_seam(self) that returns a list of
coordinates corresponding to the cheapest vertical seam to remove, e.g.,
[(5, 0), (5, 1), (4, 2), (5, 3), (6, 4)]. You should implement the dynamic program described
above in a bottom-up manner.

ResizeableImage inherits from ImageMatrix. You should use the following compo-
nents of ImageMatrix in your dynamic program:

• self.energy(i,j) returns the energy of a pixel. This takes O(1) time, but the
constant factor is sizeable.

• self.width and self.height are the width and height of the image, respectively.

Test your code using test_image.py, and submit ResizeableImage.py to the class
website. You can also view your code in action by running gui.py. Included with the
problem set are two differently sized versions of the same sunset image. If you remove
enough seams from the sunset image, it should center the sun.

Also, please try out your own pictures (most file formats should work), and send us any
interesting before/after shots.

2. (25 points) Making Progress

You work on your thesis over the weekend, and every time you make a change to your code,
you run your test_awesomeness.py script, which spits out a score telling you how
awesome your code is. During two hard days of work, you accumulate a large, time-ordered
list of these awesomeness scores, e.g., [32, 31, 46, 36, 32, 36, 30, 33, 22, 38, 2, 13].

You have a weekly meeting with your advisor, and each week you have to show that you
made progress, so that he’ll leave you alone for another week. You devise a plan in which
every week you will show your advisor a newer version of your code, along with an awe-
someness score that is better than the previous week’s. To maximize the number of weeks
of slacking you get out of your two days of work, you need to calculate a longest increasing
subsequence of your awesomeness scores. In the example, one such subsequence would be
[31, 32, 36, 38]. The subsequence should be strictly increasing, because you need to show
improvement each time.

(a) (4 points) Clearly state the set of subproblems that you will use to solve this problem.



Handout 14: Problem Set 6 3

(b) (4 points) Write a recurrence relating the solution of a general subproblem to solutions
of smaller subproblems.

(c) (2 points) Analyze the running time of your algorithm, including the number of sub-
problems and the time spent per subproblem.

(d) (15 points) Write a function longest_increasing_subsequence(scores)
in progress.py, which takes a list of scores, and returns the longest (strictly) in-
creasing subsequence of those scores. Write it in a bottom-up manner (because the
Python recursion stack is limited).
Note that, assuming your subproblems from part (a) only find the size of the best result,
you should also keep parent pointers so that you can reconstruct the actual subsequence.
Submit progress.py to the class website.

Part B: Due Thursday, May 7th

1. (25 points) Linear Rubberband Approximation

Assume an unknown function, f(x), generated a sequence of n points on a plane. Using
these n points, we now want to produce an approximation g(x) to the unknown function
f(x) (at least for x in the range of the points given). We will do this using a piecewise
linear function of at most k linear pieces, where k is a given integer. We construct g in the
following manner:.

• Let each point, pi be the pair of coordinates, (xi, yi); assume they are labeled in order of
increasing x coordinate. Suppose from the n given points, we form a subset by taking
k + 1 of those points. We will label the points in the subset qj such that qj = pij , for
1 ≤ j ≤ k + 1 and 1 = i1 < i2 < · · · < ik+1 = n.

• The piecewise function g(x) then consists of the straight line segments connecting
every two adjacent q points starting at q1 and ending at qk+1 (there are k linear pieces).

• We define the approximation error from our piecewise linear function g of k pieces on
the original point set by summing the squared errors between the n original points and
the approximation g(x):

errork =
n∑

i=1

(yi − g(xi))
2

note: the approximation error is zero for the k + 1 points pij .

(a) (20 points) Assuming we are given the sequence of n points and an integer k, where
1 ≤ k ≤ n, state the dynamic programming problem we need to solve in order to
find the g that minimizes errork. That is, state the subproblems we need to solve, the
relation between the problems, and the base case(s).



4 Handout 14: Problem Set 6

(b) (5 points) To avoid overfitting, suppose we want to minimize:

h(k) = c ∗ k + errork

where c is some given constant. Describe a simple approach for doing so. Can you
improve the running time if h(k) is assumed to be convex?

2. (25 points) Viterbi’s Algorithm

The Viterbi algorithm is used to estimate the most likely sequence of states given a sequence
of observations. It is used in speech recognition, wifi networks, and many other applications.
In this problem we develop a variant of Viterbi for a problem that is a bit easier to state than
the standard one.

(a) (10 points) Consider a directed graph G(V, E) with a special source vertex s and with
a label `(e) for each edge e ∈ E. The labels may repeat and several edges may have
the same label. Given the graph and a sequence of labels `1, `2, . . . , `k, describe an
algorithm that finds a path s = v0, v1, v2, . . . , vk such that `i = `(vi−1, vi). That is, the
labels along the path should match the given sequence of labels. Analyze the running
time of your algorithm.

(b) (15 points) Now suppose that each edge e ∈ E also has a probability p(e), such that
the sum of probabilities of the edges that leave each vertex is 1. Extend your algorithm
to output the most probable path consistent with a given sequence of labels, where the
probability of a path is the product of edge probabilities along it. Analyze the running
time of the algorithm.


