
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology March 17, 2009
Professors Sivan Toledo and Alan Edelman Handout 6

Problem Set 4
This problem set is divided into two parts: Part A problems are programming tasks, and Part B
problems are theory questions.

Part A questions are due Tuesday, April 7th at 11:59PM.
Part B questions are due Thursday, April 9th at 11:59PM.

Solutions should be turned in through the course website in PDF form using LATEX or scanned
handwritten solutions.
A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as it will save you time spent on write-ups,
and also help you conceptualize the key idea of the problem.

Exercises are for extra practice and should not be turned in.
Exercises:

• CLRS 22.2-3 (page 539)

• CLRS 22.2-8 (page 539)

• CLRS 22.3-9 (page 548)

• CLRS 22.3-10 (page 549)

Part A: Due Tuesday, April 7th
1. (50 points) 2× 2× 2 Rubik’s Cube

We say that a configuration of the cube is k levels from the solved position if you can reach
the configuration in exactly k twists, but cannot reach the it in any fewer twists.

Download ps4 rubik.zip from the class website. We also provide a GUI representation
of the Rubik’s cube in ps4 rubik GUI.zip, courtesy of two 6.006 students last year.

(a) (20 points) For this problem, we will use breadth-first search to recreate the column la-
beled f in the chart seen at http://en.wikipedia.org/wiki/Pocket Cube.
Write a function positions at level in level.py that takes a nonnegative
integer argument level, and returns the number of configurations that are level



2 Handout 6: Problem Set 4

levels from the solved configuration (rubik.I), using both quarter twists and half
twists (twisting the cube by 90 or 180 degrees).

The code in rubik.py only defines the rubik.quarter twists move set, so
you should start by defining a new move set that includes half twists as well. Do not
modify rubik.quarter twists because you will need it for the next part of this
problem.

Test your code using test level.py, and submit it to the class website. Testcases
above level 8 are commented out, since they may require more memory than many
computers have.

(b) (30 points) Now we will solve the Rubik’s cube puzzle by finding the shortest path
between two configurations (the start and goal). For this part of the problem, we will
limit the move set to only allow quarter twists (half twists are not allowed).

Your code from part (a) could easily be modified to find shortest paths, but a BFS that
goes as deep as 14 levels will take a few minutes (not to mention the memory needed).
A few minutes might be fine for creating a Wikipedia page, but we want to solve the
cube fast!

Instead, we will take advantage of a property of the graph that we can see in the chart.
In particular, the number of nodes at level 7 (half the diameter) is much smaller than
half the total number of nodes.

With this in mind, we can instead do a two-way BFS, starting from each end at the
same time, and meeting in the middle. At each step, expand one level from the start
position, and one level from the end position, and then check to see whether any of the
new nodes have been discovered in both searches. If there is such a node, we can just
read off parent pointers (in the correct order) to return the shortest path.

Write a function shortest path in solver.py that takes two positions, and re-
turns a list of moves that is a shortest path between the two positions.

Test your code using test solver.py. Check that your code runs at close to the
same speed as level 7 from part(a) in the worst case, after modifying it to use just the
quater twist move set.

Submit your code to the class website. No written part is required for any part of this
problem, but you should make sure your code is adequately documented so that we can
understand it.

(c) (Optional) Go out and impress your friends with new 2x2x2 Rubik’s Cube solver you
just created! You can test your code using rubik solver GUI.py, which will ask
you to input the starting configuration and show you the shortest path solution. You will
need to copy your solver.py file into the directory where the GUI is located.

If you have any feedback, bug reports, or suggestions for improvement on the GUI,
please send it to the TAs.



Handout 6: Problem Set 4 3

Part B: Due Thursday, April 9th
1. (16 points) Eliminating Cycles by Removing One Edge

For each of the following statements, prove the statement or give a small counter example
to show that it is false. You may use LATEX to draw counter-example graphs if necessary (the
solution template contains a drawing of the following graph to get you started).

r r r
r r r
r r r

-

6

�
�
��

(a) (8 points) If DFS on a graph G produces exactly one back edge, then it is possible to
remove an edge from G to make the graph acyclic. (Please recall that self-loops are
back edges.)

(b) (8 points) If G is cyclic but can be made acyclic by removing one edge, then DFS will
encounter exactly one back edge.

2. (8 points) Bipartite graphs

An undirected graph is called bipartite if its nodes can each be assigned a color, either red
or blue, such that no red node is adjacent to another red node, and no blue node is adjacent
to another blue node. Give an efficient algorithm to determine if a graph is bipartite. What
is its running time?

3. (26 points) Cycle Detection

A cycle is a path of edges from a node to itself.

(a) (7 points) You are given a directed graph G = (V, E), and a special vertex v. Give an
algorithm based on BFS that determines in O(V +E) time whether v is part of a cycle.

(b) (12 points) You are given a graph G = (V, E), and you are told that every vertex is
reachable from vertex s. You want to determine whether the graph has any cycles.
Ben Bitdiddle proposes the following algorithm. Perform a BFS from s. If, during the
search, you ever reach a node that you have already seen before, then declare that G
has a cycle. If you never reach the same node twice, declare that there is no cycle.

i. Show that Ben’s algorithm works for undirected graphs.
ii. Show that Ben’s algorithm does not work for directed graphs.

(c) (7 points) You are given a directed graph G = (V, E). Give an algorithm based on
DFS that determines in O(V + E) time whether there is a cycle in G.


