
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology February 17rd, 2009
Professors Sivan Toledo and Alan Edelman Handout 3

Problem Set 2

This problem set is divided into two parts: Part A problems are programming tasks, and
Part B problems are theory questions.

Part A questions are due Tuesday, March 3rd at 11:59PM.
Part B questions are due Thursday, March 5th at 11:59PM.

Solutions should be turned in through the course website in PDF form using LATEX or
scanned handwritten solutions.
A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct
solution which is described clearly. Convoluted and obtuse descriptions might receive
low marks, even when they are correct. Also, aim for concise solutions, as it will save you
time spent on write-ups, and also help you conceptualize the key idea of the problem.

Exercises are for extra practice and should not be turned in.
Exercises:

• CLRS 11.2-1 (page 228)

• CLRS 11.2-2 (page 229)

• CLRS 11.3-1 (page 236)

• CLRS 11.3-3 (page 236)

• Prove that red-black trees are balanced, i.e., if a red-black tree contains n nodes, then
its height is O(log n). Red-black trees are binary search trees satisfying the following
properties:

When a node does not have a left (or right) child, we say it has a NIL pointer instead.

1. Each node is augmented with a bit signifying whether the node is red or black.

2. If a node is red, then both of its children are black.

3. The paths from the root to any NIL contain the same number of black nodes.

2 Handout 3: Problem Set 2

Part A: Due Tuesday, March 3rd

1. (50 points) Longest Common Substring

Humans have 23 pairs of chromosomes, while other primates like chimpanzees
have 24 pairs. Biologists claim that human chromosome #2 is a fusion of two pri-
mate chromosomes that they call 2a and 2b. We wish to verify this claim by locating
long nucleotide chains shared between the human and primate chromosomes.

We define the longest common substring of two strings to be the longest contiguous
string that is a substring of both strings e.g. the longest common substring of DEAD-
BEEF and EA7BEEF is BEEF.1 If there is a tie for longest common substring, we just
want to find one of them.

Download ps2-dna.zip from the class website. The problem set FAQ section of the
course web site contains additional hints for this problem.

(a) (2 points)
Ben Bitdiddle wrote substring1.py. What is the asymptotic running time of
his code? Assume |s| = |t| = n.

(b) (2 points)
Alyssa P Hacker realized that by only comparing substrings of the same length,
and by saving substrings in a hash table (in this case, a Python set), she could
vastly speed up Ben’s code.
Alyssa wrote substring2.py. What is the asymptotic running time of her
code?

(c) (12 points) Recall binary search from Problem Set 1. Using binary search on
the length of the string, implement an O(n2 log n) solution. You should be able
to copy Alyssa’s k substring code without changing it, and just rewrite the
outer loop longest substring.
Check that your code is faster than substring2.py for chr2 first 10000
and chr2a first 10000.
Put your solution in substring3.py, and submit it to the class website.

(d) (30 points)
Rabin-Karp string searching is traditionally used to search for a particular sub-
string in a large string. This is done by first hashing the substring, and then
using a rolling hash to quickly compute the hashes of all the substrings of the
same length in the large string.
For this problem, we have two large strings, so we can use a rolling hash
on both of them. Using this method, implement an O(n log n) solution for

1Do not confuse this with the longest common subsequence, in which the characters do not need to be
contiguous. The longest common subsequence of DEADBEEF and EA7BEEF is EABEEF.

Handout 3: Problem Set 2 3

longest substring. You should be able to copy over your outer loop
longest substring from part (c) without changing it, and just rewrite
k substring.
Your code should work given any two Python strings (see test-substring.py
for examples). The comparison should be case-sensitive. We recommend using
the ord function to convert a character to its ascii value.
Check that your code is faster than substring3.py for chr2 first 10000
and chr2a first 10000.
Put your solution in substring4.py, and submit it to the class website.
Remember to thoroughly comment your code, including an explanation of any
parameters chosen for the hash function, and what you do about collisions.

(e) (4 points)
The human chromosome 2 and the chimp chromosomes 2a and 2b are quite
large (over 100,000,000 nucleotides each) so we took the first and last million
nucleotides of each chromosome and put them in separate files.
chr2 first 1000000 contains the first million nucleotides of human chro-
mosome 2, and chr2a first 1000000 contains the first million nucleotides
of chimpanzee chromosome 2a. Note: these files contain both uppercase and
lowercase letters that are used by biologists to distinguish between parts of the
chromosomes called introns and extrons.
Run substring4.py on the following DNA pairs, and submit the lengths of
the substrings.
Warning: This part may take a while depending on your implementation of the
Rabin-Karp rolling hash. (Leave more than an hour for this part):
chr2 first 1000000 and chr2a first 1000000
chr2 first 1000000 and chr2b first 1000000
chr2 last 1000000 and chr2a last 1000000
chr2 last 1000000 and chr2b last 1000000

If your code works, and biologists are correct, then the first million codons of
chr2 and chr2a should have much longer substrings in common than the first
million codons of chr2 and chr2b. The opposite should be true for the last
million codons.

(f) Optional: Make your code run in O(n log k) time, where k is the length of the
longest common substring.

4 Handout 3: Problem Set 2

Part B: Due Thursday, March 5th

1. (15 points) Building a Balanced Search Tree from a Sorted List

You are given a sorted Python list containing n numbers.

(a) (5 points) Show how to construct a binary search tree containing the same
numbers. The tree should be roughly balanced (its height should be O(log n))
and the running time of your algorithm should be O(n).

(b) (5 points) Argue that your algorithm returns a tree of height O(log n). Note: It
is probably easier to prove an absolute bound (such as 1 + log n or 2 log n) than
to use asymptotic notation in the argument.

(c) (5 points) Argue that the algorithm runs in O(n) time (here it is hard to avoid
the asymptotic notation, so use asymptotic notation).

2. (15 points) Collision resolution

For parts (a) through (c), assume simple uniform hashing.

(a) (3 points) Consider a hash table with m slots that uses chaining for collision
resolution. The table is initially empty. What is the probability that, after three
keys are inserted, there is a chain of size 3?

(b) (4 points) Consider a hash table with m slots that uses open addressing with
linear probing. The table is initially empty. A key k1 is inserted into the table,
followed by key k2. What is the probability that inserting key k3 requires three
probes?

(c) (4 points) Suppose you have a hash table where the load-factor α is related to
the number n of elements in the table by the following formula:

α = 1− 1

log n
.

If you resolve collisions by chaining, what is the expected time for an unsuc-
cessful search in terms of n?

(d) (4 points) Using the same formula relating α and n from part (c), if you re-
solve collisions by open-addressing, give a good upper bound on the expected
time for an unsuccessful search in terms of n. For this part, assume Uniform
Hashing.

3. (20 points) Counting Landings in a Time Interval

In this problem we will augment a binary search tree to improve the running time
of a specialized query. Storing additional data in every node of the tree (and main-
taining this data when the tree is modified) speeds up the query. In all the parts of
this problem, T is a binary search tree that stored n integers.

Handout 3: Problem Set 2 5

(a) (7 points) Describe an algorithm countInRange to compute the number of
nodes with values in the range [a, b], where a and b are integer values that
are stored in T (your algorithm can assume that a and b are in the tree). The
algorithm should run in O(k + h) time where k is the number of nodes with
values in the range [a, b] and h is the height of T .

(b) (3 points) Describe a strategy to augment the tree. What additional information
do you propose to store at every node of the tree so that countInRange can
be implemented in O(h) time?

(c) (5 points) Using your augmented binary search tree, show how to count the
number of nodes in the range [a, b] in O(h) time.

(d) (5 points) Given the augmented binary search tree, show how you can mod-
ify the insert operation and how to modify rotation operations so that they
correctly maintain the extra information stored at each node.

