
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology February 3rd, 2009
Professors Sivan Toledo and Alan Edelman Handout 2

Problem Set 1
This problem set is divided into two parts: Part A problems are programming tasks, and
Part B problems are theory questions.

Part A questions are due Tuesday, February 17th at 11:59PM.
Part B questions are due Thursday, February 19th at 11:59PM.

Solutions should be turned in through the course website in PDF form using LATEX or
scanned handwritten solutions.
A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct
solution which is described clearly. Convoluted and obtuse descriptions might receive
low marks, even when they are correct. Also, aim for concise solutions, as it will save you
time spent on write-ups, and also help you conceptualize the key idea of the problem.

Part A: Due Tuesday, February 17th

1. (20 points) Running Time

Version 6 of our Document Distance code uses an algorithm called merge sort to
improve upon the Θ(n2) running time of insertion sort. (We’ll talk more about merge
sort and other sorting algorithms in a few weeks.)

You can find an implementation of merge sort on page 3 of this document.

(a) (10 points) Determine experimentally the running time of mergesort, by run-
ning it on different-sized lists of random numbers. (After you import random,
you can get a random floating-point number using the random.random()
function.)
Fill in the following chart. Include in your PDF submission a snippet of code
that determines one of the entries in the chart.

|s| = 102 |s| = 103 |s| = 104 |s| = 105

time in ms

There are a number of ways to time code. You can use the timeit module1 Al-
ternatively, if you have ipython installed,2 you can use the more user-friendly
builtin %timeit command. Make sure you check what the default number of
iterations for your timing command is! By default, Timer.timeit() in the

1See http://www.diveintopython.org/performance_tuning/timeit.html for a good de-
scription of how to use the timeit module.

2See http://ipython.scipy.org/. Highly recommended.

2 Handout 2: Problem Set 1

timeit module runs your command one million times. You should change it to
be high enough so your results don’t have too much variance, but low enough
that you don’t die of boredom.

(b) (10 points) Give an approximate formula for asymptotic running time of merge
sort based on your experiments. Justify your answer by dividing your numbers
from the chart above by the formula, and showing that the result is approxi-
mately constant.

2. (30 points) Set Intersection

Python has a built in set data structure. A set is a collection of elements without
repetition.

In an interactive Python session, type the following to create an empty set:

s = set()

We can also create a set from a list:

l = [1, 2, 3]
s = set(l)

To find out what operations are available on sets, type:

dir(s)

Some fundamental operations of sets include add, remove, and contains
and len . Note that the contains and len methods are more
commonly called with the syntax element in s and len(s). (While you can use
s. contains (element) and it will work just fine, it’s not very nice-looking,
and people will look at you funny if you write it that way.) All four of these opera-
tions run in constant time i.e. O(1) time.

s.intersection(t) that takes two sets, s and t, and returns a new set containing
all the elements that occur in both s and t. We will use intersection in a new
version of the Document Distance code from the first two lectures.

In the Document Distance problem from the first two lectures, we compared two
documents by counting the words in each, treating these counts as vectors, and
computing the angle between these two vectors. For this problem, we will change
the Document Distance code to use a new metric. Now, we will only care about
words that show up in both documents, and we will ignore the contributions of
words that only show up in one document.

Download ps1.py, docdist7.py, and test-ps1.py from the class website.
docdist7.py is mostly the same as docdist6.py seen in class, however it does
not implement vector angle or inner product; instead, it imports those func-
tions from ps1.py. Currently, ps1.py contains code copied from docdist6.py,
but you will need to modify this code to implement the new metric.

Handout 2: Problem Set 1 3

Merge sort code for Part A, Problem 1:

def merge_sort(A):
"""
Sort list A into order, and return result.
"""
n = len(A)
if n==1:

return A
mid = n//2 # floor division
L = merge_sort(A[:mid])
R = merge_sort(A[mid:])
return merge(L,R)

def merge(L,R):
"""
Given two sorted sequences L and R, return their merge.
"""
i = 0
j = 0
answer = []
while i<len(L) and j<len(R):

if L[i]<R[j]:
answer.append(L[i])
i += 1

else:
answer.append(R[j])
j += 1

if i<len(L):
answer.extend(L[i:])

if j<len(R):
answer.extend(R[j:])

return answer

4 Handout 2: Problem Set 1

(a) (15 points) Modify inner product to take a third argument, domain, which
will be a set containing the words that occur in both texts. Modify the code so
that it only increases sum if the word is in domain.

(b) (15 points) Modify vector angle so that it creates sets of the words in both
L1 and L2, takes their intersection, and uses that intersection when calling
inner product.

(Hint: You can probably make the needed changes in under a dozen lines of code.)

Run test-ps1.py to make sure your modified code works. The same test suite
will be run when you submit ps1.py to the class website.

Your code should not take significantly longer to run with the new metric. (Why
not?)

Submit ps1.py on the class website. All code submitted for this class will be
checked for accuracy, asymptotic efficiency, and clarity.

Part B: Due Thursday, February 19th

1. (25 points) Asymptotic Growth

For each group of six functions below, rank the functions by increasing order of
growth; that is, find an arrangement g1, g2, . . . , g6 of the functions satisfying g1 =
O(g2), g2 = O(g3), . . . , g5 = O(g6). Partition each list into equivalence classes such
that f(n) and g(n) are in the same class if and only if f(n) = Θ(g(n)).

(a) (8 points) Group 1:

f1(n) = 106006n2, f2(n) = 1/n, f3(n) = n6.006

f4(n) = n, f5(n) = 1/6.006, f6(n) = 6.006n

(b) (9 points) Group 2:

f1(n) = n log n, f2(n) = log(log(n)), f3(n) =
(

n
50

)
f4(n) = n1/50, f5(n) = log(n), f6(n) = n50

(c) (8 points) Group 3:

f1(n) = 2n, f2(n) = n2n, f3(n) = 2n+1

f4(n) = 4n, f5(n) = n!, f6(n) = 3
√

n

2. (25 points) Binary Search

In Problem Solving With Algorithms And Data Structures Using Python by Miller and
Ranum, two examples are given of a binary search algorithm. Both functions take

Handout 2: Problem Set 1 5

a sorted list of numbers, alist, and a query, item, and return true if and only if
item ∈ alist. The first version is iterative (using a loop within a single func-
tion call) and the second is recursive (calling itself with different arguments). Both
versions can be found on the last page of this problem set.

In theory, the iterative version and the recursive version should have the same time
complexity. However, in the following code, they are implemented with different
basic Python operations, and their complexity is actually different. To help pinpoint
where the difference occurs, you may want to look up operations in the Python Cost
Model on the course website.

Let n = len(alist).

(a) (8 points) What is the runtime of the iterative version in terms of n, and why?
Be sure to state a recurrence relation and solve it.

(b) (8 points) What is the runtime of the recursive version in terms of n, and why?
Be sure to state a recurrence relation and solve it.

(c) (9 points) Explain how you might fix the recursive version so that it has the
same asymptotic running time as the iterative version (but is still recursive).

6 Handout 2: Problem Set 1

Iterative Version:

def binarySearch(alist, item):
first = 0
last = len(alist)-1
found = False

while first<=last and not found:
midpoint = (first + last)/2
if alist[midpoint] == item:

found = True
else:

if item < alist[midpoint]:
last = midpoint-1

else:
first = midpoint+1

return found

Recursive Version:

def binarySearch(alist, item):
if len(alist) == 0:

return False
else:

midpoint = len(alist)/2
if alist[midpoint]==item:

return True
else:

if item<alist[midpoint]:
return binarySearch(alist[:midpoint],item)

else:
return binarySearch(alist[midpoint+1:],item)

