
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology April 24, 2008
Professors Srini Devadas and Erik Demaine Handout 12

Problem Set 6

This problem set is due Thursday May 8 at 11:59PM.
Solutions should be turned in through the course website in PDF form using LATEX or scanned
handwritten solutions.
A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as it will save you time spent on write-
ups, and also help you conceptualize the key idea of the problem.

1. (10 points) Fibonacci

We define the Fibonacci numbers as follows:

F0 = 0

F1 = 1

∀n > 1, Fn = Fn−1 + Fn−2

For this problem, you will code four versions of fib(n), all of which should return the
same answers.

Download ps6_fib.zip.

(a) Write fib_recursive(n). It should implement the recursion directly and take
time exponential in n.

(b) Write fib_memoize(n). It should be recursive like fib_recursive(n), but it
should memoize its answers, so that it runs in time O(n).

(c) Write fib_bottom_up(n). Instead of working top-down like in the previous two
examples, start from the bottom, recording your results in a list. This code should
also take O(n) time.

(d) Write fib_in_place(n). It should work bottom-up like the previous example,
but use only O(1) space instead of accumulating answers into a list.

Submit fib.py to the class website.



2 Handout 12: Problem Set 6

2. (15 points) Making Change

You’ve just signed up as a software engineer for a new intergalactic trading post in
Deep Space 6. For each transaction, you are given a list of coin denomination values,
e.g., denomination = [1, 5, 10, 17], and an amount of change, C. You have an unlimited
number of each type of coin. Your goal is to find the shortest possible list of coins that
adds up to C. For simplicity, assume that there is always a penny 1 ∈ denomination
and that the desired change C is an integer, so the problem always has a solution.

(a) Clearly state the set of subproblems that you will use to solve this problem.
Solution: Let dp[i] be the smallest number of coins that can be used to add up

to value i.

(b) Write a recurrence relating the solution of a general subproblem to solutions of
smaller subproblems.

Solution:
dp[0] = 0

dp[i] = 1 + min
d∈denomination

dp[i− d]

(c) Analyze the running time of your algorithm, including the number of subproblems
and the time spent per subproblem.

You should end up with a pseudopolynomial running time, meaning that the
polynomial includes some power of C. This is not exactly the same as being
polynomial with respect to the size of the input, because it only takes lg C bits
of input to represent the number C.

Solution: There are C problems, for each value between 0 and C. Each sub-
problem takes O(k) time to solve, where k is the length of denomination. The
running time is O(k ∗ C).

(d) Download ps6_change.zip.

Write a function make_change(denomination, C) which returns a list of coins
that add up to C, where the size of the list is as small as possible. Write it in a
bottom-up manner (because the Python recursion stack is limited).

Note that, assuming your subproblems from part (a) only find the size of the best
result, you should also keep parent pointers so that you can reconstruct the actual
subsequence.

Submit change.py to the class website.



Handout 12: Problem Set 6 3

3. (15 points) Making Progress

You work on your thesis over the weekend, and every time you make a change to your
code, you run your test_awesomeness.py script, which spits out a score telling you
how awesome your code is. During two hard days of work, you accumulate a large, time-
ordered list of these awesomeness scores, e.g., [32, 31, 46, 36, 32, 36, 30, 33, 22, 38, 2, 13].

You have a weekly meeting with your advisor, and each week you have to show that
you made progress, so that he’ll leave you alone for another week. You devise a plan
in which every week you will show your advisor a newer version of your code, along
with an awesomeness score that is better than the previous week’s. To maximize
the number of weeks of slacking you get out of your two days of work, you need to
calculate a longest increasing subsequence of your awesomeness scores. In the example,
one such subsequence would be [31, 32, 36, 38]. The subsequence should be strictly
increasing, because you need to show improvement each time. Thinking back to your
6.006 days, you have a vague recollection that longest increasing subsequence is one of
those problems that can be solved by Dynamic Programming.

(a) Clearly state the set of subproblems that you will use to solve this problem.
Solution: Let dp[i] be the length of the longest increasing subsequence ending

at element i.

(b) Write a recurrence relating the solution of a general subproblem to solutions of
smaller subproblems.

Solution: Let A be the array of awesomeness scores.

dp[0] = 0

dp[i] = 1 + max
j<i,A[j]<A[i]

dp[j]

Simply try all possible previous elements j. Check to see if that score was smaller.
If so, we can use the best subsequence ending there, making it one longer because
we also use element i.

(c) Analyze the running time of your algorithm, including the number of subproblems
and the time spent per subproblem.

Solution: There are n subproblems, where n is the number of awesomeness
scores. Each subproblem can be solved in time O(n), for a total running time of
O(n2).

(d) Download ps6_progress.zip.

Write a function longest_increasing_subsequence(scores) which takes a list
of scores, and returns the longest (strictly) increasing subsequence of those scores.
Write it in a bottom-up manner (because the Python recursion stack is limited).



4 Handout 12: Problem Set 6

Note that, assuming your subproblems from part (a) only find the size of the best
result, you should also keep parent pointers so that you can reconstruct the actual
subsequence.

Submit progress.py to the class website.

4. (20 points) Image Resizing

In a recent paper, “Seam Carving for Content-Aware Image Resizing”, Shai Avidan
and Ariel Shamir describe a novel method of resizing images. You are welcome to read
the paper, but we recommend starting with the YouTube video:

http://www.youtube.com/watch?v=vIFCV2spKtg

Both are linked to from the Problem Sets page on the class website. After you’ve
watched the video, the terminology in the rest of this problem will make sense.

If you were paying attention around time 1:50 of the video, then you can probably guess
what you’re going to have to do. You are given an image, and your task is to calculate
the best vertical seam to remove. A vertical seam is a connected path of pixels, one
pixel in each row. We call two pixels connected if they are vertically or diagonally
adjacent. The best vertical seam is the one that minimizes the total “energy” of pixels
in the seam.

For some reason, the video didn’t spend much time on the most interesting part—
dynamic programming—so here’s the algorithm:

Subproblems: For each pixel (i, j), what is the lower-energy seam that starts at the
top row of the image, but ends at (i, j)?

Relation: Let dp[i,j] be the solution to subproblem (i, j). Then
dp[i,j] = min(dp[i,j-1],dp[i-1,j-1],dp[i+1,j-1]) + energy(i,j)

Analysis: Solving each subproblem takes O(1) time: there are three smaller subprob-
lems to look up, and one call to energy(), which all take O(1) time. There is one
subproblem for each pixel, so the running time is Θ(A), where A is the number
of pixels, i.e., the area of the image.

Download ps6_image.py. You will also need installed PIL (Python Imaging Library,
freely available from http://www.pythonware.com/products/pil/), and Tkinter if
you want to view images. If you are using Athena (Linux), add -f 6.006 and run
python2.5.

In ResizeableImage.py, write a function best_seam(self) that returns a list of
coordinates corresponding to the cheapest vertical seam to remove, e.g.,
[(5, 0), (5, 1), (4, 2), (5, 3), (6, 4)]. You should implement the dynamic program described
above in a bottom-up manner.

ResizeableImage inherits from ImageMatrix. You should use the following compo-
nents of ImageMatrix in your dynamic program:

http://www.youtube.com/watch?v=vIFCV2spKtg
http://www.pythonware.com/products/pil/


Handout 12: Problem Set 6 5

• self.energy(i,j) returns the energy of a pixel. This takes O(1) time, but the
constant factor is sizeable.

• self.width and self.height are the width and height of the image, respectively.

Test your code using test_image.py, and submit ResizeableImage.py to the class
website. You can also view your code in action by running gui.py. Included with the
problem set are two differently sized versions of the same sunset image. If you remove
enough seams from the sunset image, it should center the sun.

Also, please try out your own pictures (most file formats should work), and send us
any interesting before/after shots.


