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Quiz 2 Solutions
Problem 1. True or False [35 points] (7 parts)

Decide whether these statements are True or False. You must briefly justify all your answers to
receive full credit.

(a) To sort n integers in the range from 1 to n2, a good implementation of radix sort is
asymptotically faster in the worst case than any comparison sort.

True False
Explain:

Solution: True. Split each number into two digits, each between 0 and n. Then
make two passes of counting sort, each taking θ(n) time. Any comparison sort will
take Ω(n log n) time.

(b) Call an ordered pair (x1, y1) of numbers lexically less than an ordered pair (x2, y2)
if either (i) x1 < x2 or (ii) x1 = x2 and y1 < y2. Then a set of ordered pairs can
be sorted lexically by two passes of a sorting algorithm that only compares individual
numbers.

True False
Explain:

Solution: True. The idea is similar to RADIX-SORT though it is not exactly the
same. First we sort on the yi digit of each pair, (xi, yi). Next we sort on the xi digit
using a stable sort.
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(c) Any in-place sorting algorithm can be used as the auxiliary sort in radix sort.
True False

Explain:

Solution: False. The auxiliary algorithm has to be stable. In-place means the algo-
rithm only uses constant additional memory.

(d) Every directed acyclic graph has only one topological ordering of its vertices.
True False

Explain:

Solution: False. Counterexample: the graph {(1,2), (1,3)} can be topologically
sorted either [1,2,3] or [1,3,2].

(e) If the priority queue in Dijkstra’s algorithm is implemented using a sorted linked list
(where the list is kept sorted after each priority queue operation), then Dijkstra’s algo-
rithm would run in O(E lg V + V lg V ) time.

True False
Explain:

Solution: False. The array can take Θ(V ) time to insert a node, and there are V
nodes to insert, for a running time of Ω(V 2).
In addition, the Θ(E) calls to decrease-key can each take Θ(V ) time for a total running
time of Θ((V + E)V ).
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(f) In searching for a shortest path from vertex s to vertex t in a graph, two-way breadth-
first search never visits more nodes than a normal one-way breadth-first search.

True False
Explain:

Solution: False. Take a graph which looks like many spokes coming out of a center.
The starting vertex is on the outside of one of the spokes, and the ending vertex is in
the center.
Now a one-way BFS will only travel in one spoke, but a 2-way BFS will travel out all
of the spokes.

(g) Every sorting algorithm requires Ω(n lg n) comparisons in the worst case to sort n
elements.

True False
Explain:

Solution: False. Counting sort, radix sort, and bucket sort all sort in fewer than
O(n lg n) comparisons.
The lower bound only applies to comparison sorts.
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Problem 2. Linear Dijkstra? [20 points] (2 parts)

(a) Professor Devamaine has just invented an exciting optimization for Dijkstra’s algo-
rithm that runs in O(V + E) time for undirected graphs with edge weights of just 0
and 1.
Show the professor that the same time bound can be achieved simply by modifying
the graph and then running breadth-first search as a black box.

Solution: We modify the graph as follows:

1. Run DFS on the graph to discover all connected components, only following 0-
weight edges. This takes O(V + E) time.

2. Collapse each connected component into a single supernode. This takes O(V )
time.

3. Put back 1-weight edges into the supernode graph. There is an edge between
two supernodes if there is an edge with weight 1 between any pair of nodes that
belong to each of the supernodes. This takes O(E) time.

4. Run BFS on the new supernode graph, to get the shortest paths from the source
supernode (the supernode that contains the source node as given to Dijkstra.) BFS
can be run because all edges have an equal weight of 1.
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(b) After hearing of his colleague’s embarrassment, Professor Demaidas invents another
modification to Dijkstra’s algorithm that runs in O(V +E) time for undirected graphs
with edge weights of just 1 and 2.
Show the professor that the same time bound can again be achieved by modifying the
graph and then running breadth-first search as a black box.

Solution: We modify the graph as follows:

1. For every 2-weight edge, insert a new node and split the edge into two 1-weight
edges (with a new node inbetween). This takes O(E) time.

2. Run BFS on the modified graph beginning with the source vertex as given to
Dijkstra and determine shortest paths to each of the reachable vertices. BFS can
be run since all the edges have equal weights. This takes O(V + E) time. There
are at most E new vertices and E new edges compared to the original graph.



6.006 Quiz 2 Solutions Name 6

Problem 3. Bottleneck Path [20 points] (2 parts)

(a) In the bottleneck-path problem, you are given a graph G with edge weights, two
vertices s and t, and a particular weight W ; your goal is to find a path from s to t in
which every edge has at least weight W . Describe an efficient algorithm to solve this
problem. Your algorithm should work even if the edge weights are negative and/or the
particular weight W is negative.

Solution: Run BFS, ignoring any edges of weight less than W . This will take O(V +
E) time.



6.006 Quiz 2 Solutions Name 7

(b) In the maximum-bottleneck-path problem, you are given a graph G with edge weights,
and two vertices s and t; your goal is to find a path from s to t whose minimum edge
weight is maximized. Describe an efficient algorithm to solve this problem that uses
an efficient algorithm from Part (a) as a subroutine. You may assume an efficient
algorithm for Part (a) exists, and use it as a black box.

Solution: This can be done in O((V + E) lg E) time using binary search on the
edge weights. Since there are |E| edges, there are at most |E| unique weights. The
desired weight must be some edge weight so we binary search for the largest weight
of wmin that maintains a path from s to t. Sorting the edges take O(E lg E) time, and
binary search takes O(lg E) time, with each iteration requiring O(V +E) time to give
O((V + E) lg E).
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Problem 4. Reality [20 points]

You’ve just agreed to star in the new hit reality show, Whose Geek Is It Anyway? At the outset,
you’re given a map of an island of puzzles, which is a directed graph marked with a start vertex s
and a goal vertex t. Traversing each edge e requires solving a puzzle, which you believe you can
solve with probability p(e). Describe how to modify the graph so that Dijkstra’s algorithm will
find a path from s to t that has the maximum probability of winning. (Assume your abilities to
solve different puzzles are independent events.)

A sample input:

s t

85%

90%

60%

99%

95%
80%

50% 30%

45%

40%
65%

25%

(home) (fame, fortune)

Solution: Let e1, e2, . . . , ek be a list of edges forming a path. The probability of succeeding by
folling this path is p(e1) ∗ p(e2) ∗ · · · ∗ p(ek). We want a path that maximizes this probability.

Dijkstra uses an incompatible definition for the weight of a path: w(e1) + w(e2) + · · · + w(ek),
and computes the minimum-weight path.

To compensate for the differences, we (1) use logs to turn products into sums, and (2) negate all
weights so that the max path becomes the minimum cost path.

Specifically, we use w(e) = − log p(e).

Note that 0 ≤ p(e) ≤ 1, so −∞ ≤ log p(e) ≤ 0, so our formula gives us the non-negative
edge-weights needed for Dijkstra’s algorithm.
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Problem 5. Negative-Weight Cycles [25 points]

If a directed graph G = (V, E) contains a negative-weight cycle, shortest paths to some vertices
will not exist, but there may still be shortest paths to other vertices. Assume that every vertex v
is reachable from the source vertex s in G. Give an efficient algorithm that labels each vertex v
with the shortest-path distance from s to v, or with −∞ if no shortest path exists. (In other words,
compute δ(s, v) for all v.) You can invoke all algorithms covered in lectures or recitations.

For reference, below is the pseudocode for Bellman Ford adapted from CLRS, which returns False
if there are reachable negative weight cycles and True otherwise:

def bellman_ford(V, E, w, s):
1 initialize_single_source(V, E, s)
2 for i in range(|V|-1):
3 for (u, v) in E:
4 relax(u, v, w)
5 for (u, v) in E:
6 if d[v] > d[u] + w(u, v):
7 return False
8 return True

Solution: There are two natural O(V E)-time algorithms for this problem. In general, the idea
is to run Bellman-Ford to compute d[v] = δ(s, v) when δ(s, v) > −∞. Then, we need to find all
vertices v reachable from a negative-weight cycle and set d[v] = −∞.

1.After running Bellman-Ford, find all vertices with relaxable outgoing edges.
Then run a DFS (or BFS) from each such vertex v, marking them with d[v] = −∞. This runs
in O(V E) time (O(E) per DFS). For practical efficiency, each successive DFS can backtrack
when it hits a vertex visited by a previous DFS.

2.Just run Bellman-Ford again, but instead of relaxing relaxable edges, set d’s to −∞.
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